

Current events

Key Stage 4 Revision Programme

Pupil Name

ContentsCourse RationaleP4
Glossary of Keywords P5
Tutorial 1 P6
Tutorial 2 P7
Tutorial 3 P13
Tutorial 4 P20
Tutorial 5 P27
Tutorial 6 P35
Tutorial 7 P36

Course rationale

Have you switched on a light in your home today? Or maybe turned on the oven or hob to help with the cooking? Or plugged in your phone / laptop that you are working on right now?

Have you thought about what is happening between you flicking a switch and the light / heat turning on? Lots of things are happening that you cannot see before the light switches on / the oven heats up / electrical device is charging.
This topic will help you understand how electricity works, which in turn helps you do lots of things in your life. You will be looking at currents. Understanding what currents are and how they work will help you understand how electricity works. Given that we rely on electricity A LOT,
 learning about currents is pretty useful to understand how so much around us works!

Why practice this topic here in the workbook?
There is a mountain of research that shows that reading textbooks and revision guides is an extremely inefficient way to prepare for your exams. They take a lot of effort for very little reward.

The best way to prepare for answering a range of GCSE questions, is to practice
answering a range of GCSE-style questions. Makes sense, right?
They don't even have to be the same types of questions. The practice helps your brain understand how to answer GCSE questions. Just like practicing an acoustic guitar helps you to understand how to play an electric guitar. The skills are transferable.

And speaking of electric guitars, we need electricity to make them work. That's what we will be studying in these tutorials. Does that sound like a BRIGHT idea? ExCELLent.

WIRE we studying this, I hear you ask?
CURRENTly, this is the topic we find Year 10s and Year 11s struggle with the most in Physics. The answers are often SHOCKING. There are lots of COMPONENTS to cover equations to remember, definitions to learn and it's really difficult to conceptualise, so you'll have to be SWITCHED ON. Some people don't have the POTENTIAL, DIFFERENCE is, you guys do.

So take this workbook, it's free, no CHARGE, and we will practice the key concepts in SERIES. I'm sure there will be some RESISTANCE and you'll find your brain HERTZ, but keeping at it is PIVitol. I'm sure you'll reach that LIGHTBULB moment. You have the POWER, so LED the way.

Subject vocabulary

Charge	An electrical property - it can be eith positive or negative. Measured in Coulombs.
Current	The rate of flow of electrical charge. Measured in Amps

Power circuit each second. Measured in Watts.

Potential difference

Resistance

Electricity

Electron

Rate

The difference in how much energy each Coulomb of charge has at two points in a circuit. Measured in Volts.

How difficult it is for electrical charge to flow through a component. Measured in Ohms.

The amount of energy transferred by a

Electricity is a type of energy that can build up in one place or flow from one place to another

The smallest of the particles that make up an atom, and they carry a negative charge

The speed at which something happens or changes

1. Switching on

This workbook is here to help you improve your physics knowledge and understand what currents are and how they work.

2. Current events

Keywords: Current, charge, amp, coulomb, series, parallel

Objectives this tutorial:

A) Defining current
B) Calculating current
C) Calculate current in series and parallel circuits

Starter: To prove that lightning is an electrical current, Benjamin Franklin allegedly flew his kite during a storm.

He attached a metal key to the kite's silk string and made sure he stood under a shelter. What was the purpose of:

The key:
The silk string:
The shelter:

Objective A: Defining current
Charge is an electrical property - it can be either positive or negative. Current is the rate of flow of electrical charge. It is a rate - the amount of charge that flows through a circuit each second. In a metal wire, charge is carried by delocalised electrons.

The rate of flow of charge - the current - is defined by the equation: I = Q/t

- I is current (in Amps (A))
- Q is charge (in Coulombs (C))
- tis time (in Seconds (S))

If you need more help with currents check out this video here:
https://www.khanacademy.org/science/electrical-
engineering/introduction-to-ee/intro-to-ee/v/ee-current

This means that in a current of $1 \mathrm{~A}, 1 \mathrm{C}$ of charge will flow past a point in 1 second.
Note - a coulomb is a big ball of about 6.2×10^{18} electrons!

Practice A: Defining current

1) State the equation for current. Make sure you include the units!
2) From the equation, how do you know that current is the rate of flow of charge?
3) Is the charge flowing through a circuit positive or negative? How do you know?
4) 18 C of charge flow through a circuit in 6 seconds. Calculate the current.
5) (Meaty question) How many electrons flow through the same circuit each second?

Assessment A: Defining current

Which statement is incorrect?
A 1 Amp is the same as saying 1 Coulomb per second
B If more electrons flow through a wire each second, the current will decrease
C Ions are able to carry electrical charge through a liquid
D Current is the rate of flow of charge

Objective B: Calculate current and charge

Worked example 1

20 C of charge flow through a circuit in 1 minute.
a) Calculate the current.
$\mathrm{t}=1$ minute
$=60$ seconds
 conversion

Study tip

Don't forget to convert nonstandard units into standard units!
$\mathrm{I}=\mathrm{Q} / \mathrm{t}$
$\mathrm{I}=20 \mathrm{C} / 60 \mathrm{~s}$
$\mathrm{I}=0.3 \mathrm{~A} \longleftarrow$ units
b) How many electrons flow in 15 seconds? $\mathrm{I}=\mathrm{Q} / \mathrm{t}$
$0.3 \mathrm{~A}=\mathrm{Q} / 15 \mathrm{~s} \quad \longleftarrow$ substitute in values
$\mathrm{Q}=0.3 \mathrm{~A} \times 15 \mathrm{~s} \longleftarrow$ rearrange
$\mathrm{Q}=4.5 \mathrm{C} \quad \longleftarrow$ units
Number of electrons $=4.5 \mathrm{C} \times 6.2 \times 10^{18}$
Number of electrons $=2.8 \times 10^{19}$

Study tip

To find the total number of electrons, multiple the number of coulombs by the number of electrons in one coulomb.

Worked example 2

A lamp operates at 600 mA .
How long does it take for 22.8 C to flow through the lamp?
$600 \mathrm{~mA} / 1000=0.6 \mathrm{~A}$
$I=Q / t$
$0.6 \mathrm{~A}=22.8 \mathrm{C} / \mathrm{t} \longleftarrow$ substitute in values
$\mathrm{t}=22.8 / 0.6 \longleftarrow$ rearrange
$t=38 \mathrm{~s} \longleftarrow$ units

Practice B: Calculating current

1. 56700 C of charge pass through a laptop in 2.5 hours. Calculate the current of the laptop.
2. A circuit has a current of 8.5 A . How much charge flows through the circuit in 0.5 minutes?
3. A bolt of lightning transfers a charge of 15 C in 5.0×10^{-4} seconds. Calculate the current. Give your answer in standard form.
4. A student charged a power pack that could store 6 kC of charge for 6 hours using a current of 250 mA . What percentage of its capacity was the power pack charged to?
5. A set of lights consists of 20 lamps connected in series to the 50 V electricity supply. When the lights are switched on and working correctly, the current through each lamp is 0.25 A . Calculate the number of electrons passing through the circuit in 5 minutes.

Assessment B: Calculating current

Calculate the charge that flows through a thermistor in 0.2 minutes when the current is 3.5 mA .

A	0.42 C	
B	$4.2 \times 10^{-2} \mathrm{C}$	
C	42 C	8
D	0.007 C	8

Objective C: Calculate current in series and parallel circuits

Current is measured using an ammeter, connected in series (in line with) with the other components in a circuit. Current behaves differently in series and parallel circuits, and you need to know the difference!

In series circuits: current is the same at every point in the circuit
Current here $=3 \mathrm{~A}$
In a parallel circuit: current is split between the branches of the circuit. The total current in the circuit equals the sum of all the branches. But remember, it doesn't have to split equally between them.

Calculate the current through each of the ammeters in the circuit.

Current through ammeter A2
Before A2, the current splits between 2 loops. We know that 1.6 A goes to one branch so the rest must go to the other branch.
$\mathrm{A} 1=\mathrm{A} 2+\mathrm{A} 3$
$\mathrm{A} 2=\mathrm{A} 1-\mathrm{A} 3=3.8 \mathrm{~A}-1.6 \mathrm{~A}=2.2 \mathrm{~A}$

Current through ammeter A4

This is the same loop as A3, so follows the rules for current in a series circuit:
$\mathrm{A} 4=\mathrm{A} 3=1.6 \mathrm{~A}$

Study tip

Remember, at a junction, the
current splits between the branches.

$$
I_{A}=I_{B}+I_{C}
$$

Current through ammeter A5

The two loops come back together, so following the rules for a parallel circuit:
$\mathrm{A} 5=\mathrm{A} 2+\mathrm{A} 3=2.2 \mathrm{~A}+1.6 \mathrm{~A}=3.8 \mathrm{~A}$

It is also in the same loop as A1, so behaves like a series circuit:

Practice C: Calculate current in series and parallel circuits

1. Calculate the current at each ammeter

2. Dan says, "Ammeter 1 will show a lower reading than Ammeter 2 because the bulbs in the circuit use up the current." Tom says, "Ammeter 1 will show the same reading as Ammeter 2 because current is not used up." Who is right?

3. Compare the currents I_{1}, I_{2} and I_{3}

4. Calculate the current at each ammeter

Assessment C: Calculate current in series and parallel circuits

Which equation is wrong about the following circuit?

A	$A 1=A 2+A 3+A 4$
B	$A 4=A 5$
C	$A 7=A 1$
D	$A 2=A 1-A 6$
E	$A 6=A 2+A 3$

3. Potentially the same, potentially different

Keywords: potential difference, volt, series, parallel, power, watt

Objectives this tutorial:

A) Defining potential difference
B) Calculating potential difference in series and parallel circuits
C) Calculating power using potential difference and current

Starter:

A delivery driver must return to the depot when they are out of packages, to get a refill.

Each time they stop, they drop off some packages, but not necessarily all of them. When they have made all of their stops, they return to the depot to collect more.
How do you think this relates to an electrical circuit? Write down your reponse

Objective A: Defining potential difference

Potential difference is a weird one. It can be quite difficult to understand. It is the difference in electrical potential between two points in a circuit.

Let's break that down a bit more. It is the difference in how much energy each Coulomb of charge has at two points in a circuit. If at one point, each Coulomb has 7 Joules and at another point each Coulomb has 4 Joules, the potential difference is 3 Joules per Coulomb. The potential difference is 3 Volts (V).

Cells and batteries transfer energy to each coulomb of charge - they give them a push to get around the circuit. For example, a 6 V battery delivers 6 Joules of energy to every 1 Coulomb of charge.

This energy is then transferred to power the components of the circuit. The amount of energy that is transferred to a component by each Coulomb is equal to the potential difference across the component.

Note - some people say 'voltage' when they mean potential difference. This is not scientific enough, so use of the word voltage is banned.

Practice A: Defining potential difference

1) Summarise what is meant by potential difference in one sentence.
2) Potential difference is measured in Volts. What other unit could be used to measure p.d.?
3) A circuit has a 12 V battery. The potential difference across a bulb is 3 V . How many Joules does each Coulomb have left after the bulb?

If you're still unsure what is meant by potential difference, check out this video:
https://www.khanacademy.or g/science/in-in-class10th-physics/in-in-electricity/in-in-electric-potential-potential-difference/v/intro-to-
potential-difference-voltage

Assessment A: Defining potential difference

What is the best definition for potential difference?

A The amount of energy that is transferred between two points in a circuit
B The amount of energy given to each Coulomb in a circuit
C The amount of energy that is transferred by each Coulomb between two points in a circuit
D The rate of flow of charge

Objective B: Calculate potential difference in series and parallel circuits

The potential difference across a component in a circuit is measured using a voltmeter, connected in parallel (around) the component. Potential difference does the opposite to current in series and parallel circuits, so it can, potentially, be confusing!

In series circuits: potential difference is the split between the components in the circuit. The total potential difference provided by the power supply equals the sum of all the branches. If the components have the same resistance, the potential difference is split equally.

In parallel circuits: potential difference is the same on each branch of the circuit. If there are 2 or more components on a branch, the potential difference of that branch is shared between them.

Example 1

Example 2

Potential difference here $=6 \mathrm{~V}$

Worked example

Calculate the potential difference reading on each voltmeter in the circuit

Potential difference through voltmeter V2
We know that 12 V was delivered by the cell.
Before V2, 8.5 Joules per Coulomb are dropped
at the resistor.
$12 \mathrm{v}=\mathrm{V} 1+\mathrm{V} 2$
$\mathrm{V} 2=12 \mathrm{~V}-8.5 \mathrm{~V}$
$\mathrm{V} 2=3.5 \mathrm{~V}$

Potential difference through voltmeter V3
12 V are delivered to this loop and there is only one component, so all of the energy is transferred to this bulb.
$\mathrm{V} 3=12 \mathrm{~V}$
Potential difference through voltmeter V6 12 V are delivered to this loop. Therefore, we know that:
$12 \mathrm{v}=\mathrm{V} 4+\mathrm{V} 5+\mathrm{V} 6$
$\mathrm{V} 6=12 \mathrm{~V}-4 \mathrm{~V}-4 \mathrm{~V}$
$\mathrm{V} 6=4 \mathrm{~V}$
$\mathrm{V}_{\mathrm{TOT}}=\mathrm{V}_{1}+\mathrm{V} 2+\mathrm{V}_{3} \ldots$
In parallel:
$\mathrm{V}_{\text {TOT }}=\mathrm{V}_{\text {BRANCH } 1}=\mathrm{V}_{\text {BRANCH 2 }}=\mathrm{V}_{\text {BRANCH 3 }} \cdots$

Practice B: Calculate potential difference in series and parallel circuits

1. Calculate the potential difference at each voltmeter

2. Calculate the potential difference at each voltmeter

3. Calculate the potential difference at each voltmeter

$\mathrm{V} 1=$

V2 $=$

V3 $=$

4. Which blub will be brightest in this circuit and why?

Assessment B: Calculate potential difference in series and parallel circuits

Draw circuit diagrams to show four lamps connected to a 12 V battery so that:
a) each has a p.d of 12 V across it
b) each has a p.d. of 6 V across it
c) each has a p.d. of 3 V across it

Objective C: Calculating power using potential difference and current

WE KNOW SO FAR:

Current The number of Coulombs that flow each second

We can use these two definitions to work out power.

Power

The amount of energy transferred
each second
To work that out we need to know two things.

1. We need to know the amount of energy that is transferred by each Coulomb
2. We need to know the number of Coulombs that flow each second

Sound familiar?
\(\left.$$
\begin{array}{|c}\text { Power } \\
\begin{array}{c}\text { The amount of } \\
\text { energy transferred } \\
\text { each second }\end{array}
$$

each

Current

The number of

Coulombs that

flow each second\end{array}\right) \mathbf{X}\)| Potential difference |
| :---: |
| The amount of |
| energy transferred |
| by each Coulomb |

OR, put more simply

Power $=$ Current \mathbf{x} Potential difference

OR, even more simply
$P=I V$

Worked example

You might be wondering...
Power is measured in Watts?
No, that's it, it's measured in Watts (W).

A new shower has a power output of $10,580 \mathrm{~W}$ when it is connected to the 230 V mains electricity supply.

Calculate the charge that flows through the shower in 2 minutes.
$\mathrm{P}=\mathrm{IV}$
I=10,580/230 \longleftarrow rearrange
I=10,580/230 \longleftarrow rearrange
I = 46 A
I = 46 A
t = 2 minutes
t = 2 minutes
= 120 seconds \longleftarrow conversion
= 120 seconds \longleftarrow conversion
$\mathrm{I}=\mathrm{Q} / \mathrm{t}$
$46=\mathrm{Q} / 120 \quad \longleftarrow$ substitute in values
$\mathrm{Q}=46 \times 120 \quad \longleftarrow$ rearrange
$\mathrm{Q}=5,520 \mathrm{C} \longleftarrow$ units
$Q=5,520 \mathrm{C} \longleftarrow$ units

Study tip

Don't forget to convert nonstandard units into standard units!

Practice C: Calculating power using potential difference and current

1) What equation links power, potential difference and current?
2) A portable heater is connected to a 115 V battery. A current of 500 mA flows through the heater. Calculate the power of the heater.
3) A large machine generates 60 kW of power. How much current flows through the machine when connected to a 120 V power supply?
4) The charge that flows through a new shower in 5 minutes is $18,000 \mathrm{C}$. The new electric shower has a power of 13.8 kW

Calculate the potential difference of the power supply to the shower.

Assessment C: Calculating power using potential difference and current

The table shows the current drawn from the 230 volt mains electricity supply when different parts of the hairdryer are switched on.

	Current in amps
Fan only	1.0
Fan and heater 1	4.4
Fan and both heaters	6.5

Calculate the maximum power of the hairdryer.
Show clearly how you work out your answer and give the unit.

4. Resistance is NOT futile

Keywords: resistance, Ohm, series, parallel, current, potential difference

Objectives this tutorial:

A) Defining resistance
B) Resistance in series and parallel circuits
C) Ohm's law in series and parallel circuits

Starter:

 Using the picture, come up with a definition for resistance
Objective A: Defining resistance

Put simply, resistance tells us how difficult it is for electrical charge to flow through a component.

If a component has a high resistance, it is really difficult for the charge to get through it. If an object as a low resistance, it is dead easy for charge to flow through.

It stands to reason, therefore, that conductors have a low resistance and insulators have a high resistance.

Resistance is measured in Ohm's (Ω), named after the German physicist Georg Ohm.

Practice A: Defining resistance

1. If an object has a high resistance, what does this tell us about the flow of electrical charge through it?
2. Which object do you think has a higher resistance: a wooden pole or a piece of aluminium foil? Why?
3. Which has a higher resistance: $47 \mathrm{M} \Omega$ or $6.2 \times 10^{6} \Omega$?
4. If the resistance is increased, what will happen to the current flowing through a component?
5. If resistance stays the same and the potential difference of the power supply is doubled, what do you think will happed to the current?

Assessment A: Calculate potential difference in series and parallel circuits
Which statement(s) are incorrect?
A \quad The resistance of an object tells us how hard it is for charge to pass through it
B If an object has a high resistance the current passing through it is likely to be low
C Increasing the potential difference has no effect on the current through a component
D When resistance is constant, current and potential difference are directly proportional

Objective B: Resistance in series and parallel circuits

Just like current and p.d., resistance behaves differently in series and parallel circuits.

In series circuits:

The total resistance is the sum of all of the resistors in the circuit. Nice and easy.

A simple way to write this is:

$$
R_{\text {TOT }}=R_{1}+R_{2}+R_{3 \ldots}
$$

In parallel circuits

This one is a little more complicated.
The total resistance in a parallel circuit is LOWER than the smallest resistor in the circuit.

You will not be asked to calculate the total resistance in parallel, you just need to be able to say that it is:

LOWER than the smallest resistor in the circuit

Practice B: Resistance in series and parallel circuits

1. What do you know about the resistance of this circuit?

2. Calculate the total resistance of the circuit. Give your answer in Ohms, in standard form.

3. Another resistor is added to this circuit in series. What effect will this have on the brightness of the lamp? Explain your answer.

4. Which arrangement has a resistance of 10Ω ?

5. The circuits contain identical lamps. In which circuit will the lamp be brighter? Explain your answer.

B

Assessment B: Resistance in series and parallel

Calculate the resistance of each circuit

B

Objective C: Calculating using Ohm's law

If resistance remains constant, current and potential difference are directly proportional.

That means, if the potential difference doubles, the current also doubles.

This is called Ohm's law and can be written as the equation:

Potential difference $=$ Current x Resistance

OR

$\mathrm{V}=\mathrm{IR}$

Worked example 1

Calculate the reading on the ammeter. Give your answer to 2 significant figures.
$V=I R$
$5=1 \times 12$
$\mathrm{I}=5 / 12$
\longleftarrow substitute in values
$\mathrm{I}=0.4166666$......
$\mathrm{I}=0.42 \mathrm{~A}$ (2.s.f.) \longleftarrow units and rounding

Study tip

Don't forget to give your answer the the correct number of significant figures or decimal places

Worked example 2

Calculate the readings on:
$\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~A} 1, \mathrm{~A} 2$ and the resistance of R1.

Ammeters

It is a series circuit, so the current is the same everywhere in the circuit.

$$
\begin{aligned}
& \mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3 \\
& \mathrm{~A} 1=3 \mathrm{~A} \\
& \mathrm{~A} 2=3 \mathrm{~A}
\end{aligned}
$$

Voltmeters

$\mathrm{A} 1=3 \mathrm{~A}$	$\mathrm{~V}=\mathrm{IR}$
$\mathrm{A} 2=3 \mathrm{~A}$	$\mathrm{~V}=3 \times 2$
	$\mathrm{~V}=6 \mathrm{~V}$

Resistor R1

$V=I R$
$3=3 \times R$
$\mathrm{R}=3 / 3$
$R=1 \Omega$

$$
\begin{aligned}
& \mathrm{V} 2=\mathrm{V} 1+\mathrm{V} 3 \\
& \mathrm{~V} 2=6+3 \\
& \mathrm{~V} 2=9 \mathrm{~V}
\end{aligned}
$$

V2

It is a series circuit, so potential difference is shared between the components.

Study tip

You might be asked questions that require you to use your knowledge of circuits AND Ohm's law together.

Practice C: Calculating using Ohm's law

1. What is Ohm's law?
2. The potential difference of a circuit is halved. What happens to the current? Why?
3. Calculate the resistance of the diode. Give your answer to 3 significant figures.

4. Calculate the values at each point specified A1 = \qquad
A2 $=$ \qquad
A3 = \qquad
V1 = \qquad
$\mathrm{V} 2=$ \qquad
V3 = \qquad

5. Calculate the values at each point specified.

$\mathrm{Al}=$ \qquad
(A1) $\mathrm{V} 1=$ \qquad
V2 = \qquad
Calculate the resistance of:
The bulb = \qquad
The resistor = \qquad

Assessment C: Calculating using Ohm's law

1. Calculate the values at each point specified.

5. You have the power!

Keywords: power, Watt, current, potential difference, resistance
Objectives this tutorial:
A) Calculating power using current and resistance
B) Calculating power using Ohm's law
C) Calculating energy from power

Starter:

What is the equation that links potential difference, current and power?

Objective A: Calculating power using current and resistance
There are two key equations that we have learnt so far.
Ohm's law states that:

Potential difference
The amount of energy transferred by each Coulomb
$=$

Current

 The number of Coulombs that flow each secondResistance
How hard it is for charge to flow through a component

Power is related to current and potential difference using the equation:

Power The amount of energy transferred each second
Current The number of Coulombs that flow each second
\mathbf{X}Potential difference The amount of energy transferred by each Coulomb

There's one more equation to learn and we can work it out using these equations.

Practice A: Calculating power using current and resistance

1. What is potential difference in terms of current and resistance?
2. Substitute this into the equation for power (replace the ' V ' in the power equation with your answer to question 1). You should have an equation that links power, current and resistance.
3. Use your equation to calculate the power in a circuit that has a current of 4 A and a resistance of 10Ω
4. A hairdryer has a power of 220 W and runs off a 5 amp current. Calculate the resistance of the hairdryer.
5. A 900 W microwave has a resistance of 6Ω. Calculate the current flowing through the microwave. Give your answer to three significant figures.

Assessment A: Calculate potential difference in series and parallel circuits

Which equation is incorrect?

A	$P=I 2 R$
B	$R=V / I$
C	$V=I / P$
D	$I=\sqrt{ }(P / R)$

Objective B: Calculating power using Ohm's law

These two equations are often used in conjunction with one another. You might be asked to calculate power, but only be provided with resistance and potential difference.

All you have to do is use one equation, followed by the other equation.
It's easy to spot these questions in a physics exam because they are usually worth between 4 and 6 marks!

It's easy money.

For a video on
calculating current using ohms law click here: https://www. youtube.com watch? $\mathrm{V}=\mathrm{VX}$ 1P957sbGU

Worked example

The heating element of a 2.3 kW electric kettle takes a current from a 230 V mains electricity supply. Calculate the resistance of the heating element.

Step 1 - write down what you know and what you want to know
Power $=2.3 \mathrm{~kW}$
Potential difference $=230 \mathrm{~V}$
Resistance $=$?
Step 2 - what equation links the information that you know?
P = IV
Step 3 - Calculate the first unknown
$2.3 \mathrm{~kW}=2300 \mathrm{~W} \longleftarrow$ convert your units

$$
\begin{aligned}
& 2300 \mathrm{~W}=\mathrm{I} \times 230 \mathrm{~V} \\
& \mathrm{I}=2300 \mathrm{~W} / 230 \mathrm{~V} \text { substitute in values } \\
& \mathrm{I}=10 \mathrm{~A}
\end{aligned}
$$

Step 4 - what equation can you now use to find your unknown?
$V=I R$
OR
$P=I^{2} R$
Step 5 - calculate the unknown value
$V=\mathbb{R}$

Practice B: Calculating power using Ohm's law

1. Calculate the resistance of a 12 V car headlamp of power 36 W
2. A heater has a resistance of 17Ω and is used on a 230 V mains supply. Find the power to two significant figures.
3. An iron is rated at $3.5 \mathrm{~A}, 750 \mathrm{~W}$.
a) What is the potential difference across the iron?
b) What would the power be if the current was increased to 4.5 A ?
4. The battery powers 4 motors in the drone. Each motor has a resistance of 1.60Ω when the power input to each motor is 19.6 W . The 4 motors are connected in parallel with the battery.
Calculate the current through the battery.
5. The charge that flows through lawnmower in 8.5 minutes is 16320 C . It has a power of 18.3 kW . Calculate the resistance of the heating element in the new shower.

Give your answer to three significant figures.
Write down any equations you use.

Assessment B: Calculating power using Ohm's law

You are provided with charge, time and potential difference. Which equations would you use to calculate power?
A $\quad V=I R$ and $P=I^{2} R$
B $\quad I=Q / t$ and $P=I^{2} R$

C $\quad I=Q / \dagger$ and $P=I V$
D $\quad I=Q / t, R=V / I$ and $P=I^{2} R$

Objective C: Calculating energy from power

One more equation to learn. We already know that power is the amount of energy transferred each second.

We can write this mathematically by saying:
Power (W) = Energy transferred (J) / Time (s)
OR

$P=E / t$

Worked example

An electric heater draws a current of $8 \mathrm{amps}(\mathrm{A})$ when plugged into the 230 V mains electricity supply. How much energy is transferred in 20 minutes? Give your answer in KJ.

Step 1 - write down what you know and want to know
 $\mathrm{I}=8 \mathrm{~A}$
 $\mathrm{V}=230 \mathrm{~V}$
 $\mathrm{T}=20 \times 60=1200 \mathrm{~s} \quad \longleftarrow$ convert your units

$\mathrm{E}=$?
Step 2 - what equation links the information that you know?
P = IV
Step 3 - Calculate the first unknown
$\mathrm{P}=8 \mathrm{~A} \times 230 \mathrm{~V} \longleftarrow$ substitute in values
$\mathrm{P}=1840 \mathrm{~W} \longleftarrow$ units
Step 4 - what equation can you now use to find your unknown?
$\mathrm{P}=\mathrm{E} / \mathrm{t}$

Step 5 - calculate the unknown value

$1840 \mathrm{~W}=\mathrm{E} / 1200 \mathrm{~s}$
$\mathrm{E}=1840 \mathrm{~W} \times 1200 \mathrm{~s} \longleftarrow$ rearrange
$\mathrm{E}=2,208,000 \mathrm{~J}$
$\mathrm{E}=2208 \mathrm{KJ}$

- units

Practice C: Calculating energy from power

1. Calculate the energy transferred by a 1.5 W torch over its lifetime of 30 hours
2. A 6 V battery passes a current of 0.3 A through a torch bulb for 5 minutes. How much energy is transferred from the cell? Give your answer in KJ.
3. An electric light bulb is labelled 100 W and is designed to be used with a p.d. of 230 V . What current flows in it, and how much energy is transferred in 1 hour?
4. The battery in the drone can store 97.5 kJ of energy.

When the drone is hovering, the power output of the battery is 65.0 W Calculate the time for which the drone can hover.
5. (EXTRA MEATY) An immersion heater has a resistance of 17Ω and is used on a 230 V mains supply.
How long would it take to raise the temperature of 50 kg of water from $14^{\circ} \mathrm{C}$ to $58{ }^{\circ} \mathrm{C}$? Assume that the specific heat capacity of water is $4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

Energy $(\mathrm{J})=$ mass $(\mathrm{kg}) \times$ specific heat capacity \times temperature change $\left({ }^{\circ} \mathrm{C}\right)$

Assessment C: Calculating energy from power

Instead of Watts, what units should power actually be measured in?
A J / s
B Js
C s / J
6. Final assessment

Reflecting on this booklet.

What did you most enjoy about Uni Pathways?

Notes

Notes

Current events
Key Stage 4 Programme
researchersinschools.org

Lesson 1	Answers
A1	$I \frac{Q}{T}$
A2	It is the speed at which the charge is flowing. It is an amount of flow over time - in this case coulombs per second.
A3	It is negative because it is carried by delocalised electrons, which are negatively charged
A4	$3 \mathrm{~A} \quad \frac{18}{6}=3$
A5	$3 \times 6.2 \times 10^{18}=18.6 \times 10^{18}$
Assessment A	B
B1	$\frac{56,700}{2.5}=22,680 A$
B2	$8.5 \times 0.5=4.25$
B3	3×10^{-4}
B4	$\begin{aligned} & 6 \mathrm{kc}=6000 \mathrm{c} \\ & 250 \mathrm{~mA} \div 1000=0.25 A \\ & 6 \times 60^{2}=21600 \text { seconds } \\ & 0.25 A \times 21600=5400 \\ & 5400 \div 6000=90 \% \end{aligned}$
B5	$\begin{gathered} 5 A=\frac{Q}{300} \\ =1500 C \end{gathered}$
Assessment B	B
C1	1.2
C2	Tom
C3	$\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}$
C4	A4 $=0.07$
Assessment C	D

Lesson 2	Answers
A1	The difference in how much energy each coulomb of charge has at two points in a circuit.
A2	$\frac{J}{C}$
A3	9 v
A4	No energy is being transferred to the coulombs in the circuit
Assessment A	C
B1	6 V
B2	12 v
B3	$\mathrm{V}_{1}=6 \mathrm{v}$ $\mathrm{V}_{2}=3 \mathrm{v}$ $\mathrm{V}_{3}=3 \mathrm{v}$
B4	The bulb at V_{1} will be the brightest because it has the most energy being transferred to it

Assessment B

Lesson 3	
A1	Difficult for the charge to flow through
A2	A wooden pole would be more of an insulator
A3	$47 \mathrm{M} \Omega$
A4	Current decreases
A5	Current halves
Assessment A	C
B1	Less than 1 OR >1
B2	25.3Ω
B3	Decreases brightness
B4	R
B5	>6 and <10.5
Assessment B	A = $25 \quad$ B $=>6$

C1	V=IR If resistance is constant and V and I are proportional
C2	Halves because they are directly proportional
C3	2.5 ohms
C4	A1 $=8 \mathrm{~A}$
	A2 $=5 \mathrm{~A}$
	A3 $=5 \mathrm{~A}$
	V1 $=20 \mathrm{~V}$
	V2 $=20 \mathrm{~V}$
	V3 $=20 \mathrm{~V}$
	R1 $=6.67$ Ohms
	A1 $=3 \mathrm{~A}$
	V1 $=9 \mathrm{~V}$
	V2 $=5 \mathrm{~V}$
	Bulb $=2.5$ Ohms
	Resistor $=2$ Ohms
C5	
Assessment C	A1 $=4 \mathrm{~A}$
	A2 $=8 \mathrm{~A}$
	A3 $=5 \mathrm{~A}$
	V1 $=8 \mathrm{~V}$
	V2 $=8 \mathrm{~V}$
	V3 $=8 \mathrm{~V}$
	R1 $=2.67$ Ohms

Lesson 4					
A1	$\mathrm{V}=\mathrm{IR}$				
A2	$\mathrm{P}=\mathrm{IV}$ $\mathrm{P}=\mathrm{I}(\mathrm{IR})$$\quad \quad P=I^{2} R$	$	$	A3	160 W
:---	:---				
A4	8.8Ω				
A5	12.2 A				
Assessment A	C				
B1	4Ω				
B2	1 A				
B3	964.3 W				
B4	7 A				
B5	17.9Ω				
Assessment B	C				
C1	45 J				
C2	0.009 KJ				
C3	360 KJ				
C4	25 mins				
C5	~ 49.5 minutes give or take 30 seconds depending on rounding				

Q1.
Figure 1 shows the circuit symbol for three different components.
Figure 1

A

B

C
(a) Which component is a variable resistor?

Tick one box.
A

B

C \square
(b) In which component will the resistance decrease when the temperature increases? Tick one box.
A

B

C \square

Figure 2 shows four different arrangements of resistors.
Figure 2

P

R

Q

S
(c) Two of the arrangements are in series and two are in parallel.

Describe the difference between a series and a parallel arrangement.
\qquad
\qquad
\qquad
\qquad
(d) Which arrangement has a resistance of 10Ω ?

Tick one box.
P

Q

R

S \square
(e) Which arrangement has the highest resistance?

Tick one box.
P

Q

R

S

(f) A student connects a resistor to a cell for 60 seconds.

The current through the resistor is 0.97 A
Calculate the charge flow.
Use the equation:

$$
\text { charge flow }=\text { current } \times \text { time }
$$

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Charge flow = \qquad C

Q2.
Figure 1 shows a circuit diagram containing two identical lamps arranged in parallel. The reading on the ammeter is 186 mA .

Figure 1

(a) Which statement about the current through the lamps is true?

Tick one box.

The current through both lamp \mathbf{P} and lamp \mathbf{Q} is 0.093 A

The current through both lamp \mathbf{P} and $\operatorname{lamp} \mathbf{Q}$ is $\quad \square$
$\mathbf{0 . 1 8 6 ~ A}$
The current through both lamp \mathbf{P} and lamp \mathbf{Q} is 0.93 A

The current through both lamp \mathbf{P} and $\operatorname{lamp} \mathbf{Q}$ is 1.86 A

(b) Figure 2 shows a circuit that can be used to alter the brightness of a lamp.

Figure 2

The resistance of the variable resistor is increased.
What effect will this have on the brightness of the lamp?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
(c) When the potential difference across the lamp is 3.3 V , the current is 0.15 A .

Write down the equation that links current, potential difference and resistance.
Equation \qquad
(d) Calculate the resistance of the lamp.
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω

Q3.
A student built a circuit using filament lamps.
(a) Sketch a current potential difference graph for a filament lamp on Figure 1

Figure 1

Figure 2 shows the circuit with two identical filament lamps.
Figure 2

(b) Compare the currents I_{1}, I_{2} and I_{3}
\qquad
\qquad
\qquad
(c) Calculate the charge that flows through the cell in 1 minute. Each filament lamp has a power of 3 W and a resistance of 12Ω

Write any equations that you use.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Charge = \qquad
Unit = \qquad

Q4.
The current in a circuit depends on the potential difference (p.d.) provided by the cells and the total resistance of the circuit.
(a) Using the correct circuit symbols, draw a diagram to show how you would connect 1.5 V cells together to give a p.d. of 6 V .
(b) Figure 1 shows a circuit containing an 18 V battery.

Two resistors, \mathbf{X} and \mathbf{Y}, are connected in series.

- $\quad \mathbf{X}$ has a resistance of 3Ω.
- There is a current of 2 A in \mathbf{X}.

Figure 1

(i) Calculate the p.d. across \mathbf{X}.
\qquad
\qquad
P.d. across $\mathbf{X}=$ \qquad V
(ii) Calculate the p.d. across \mathbf{Y}.
\qquad
\qquad
\qquad
P.d. across $\mathbf{Y}=$ \qquad V
(iii) Calculate the total resistance of \mathbf{X} and \mathbf{Y}.
\qquad
\qquad
\qquad
Total resistance of \mathbf{X} and $\mathbf{Y}=$ \qquad Ω

Mark schemes

Q1.
(a) A
(b) C
(c) a series circuit has only one path/loop/branch
a parallel circuit has a branch(es) to provide more than one path / loop allow answers that describe the difference in terms of potential difference, current or resistance
(d) $\quad \mathbf{R}$
(e) \mathbf{P}
(f) $\quad \mathrm{Q}=0.97 \times 60$
$Q=58.2(C)$

Q = 58 (C)
an answer of 58 (C) scores 3 marks

1
[9]

Q2.
(a) 0.093 A
(b) (increasing the resistance) decreases the current
therefore (the lamp will be) dimmer
(c) potential difference $=$ current \times resistance accept correct rearrangement with R as subject
(d) $3.3=0.15 \times \mathrm{R}$
$R=3.3 / 0.15(\Omega)$
$R=22(\Omega)$
1
allow $22(\Omega)$ without working shown for 3 marks

Q3.
(a) a curve in the first and third quadrants only, passing through origin decreasing gradient
(b) any two from:

- $\quad I_{1}=I_{2}+I_{3}$
- $\quad \mathrm{I}_{2}=\mathrm{I}_{3}$
- $\quad l_{1}=2 l_{2}$
- $\quad l_{1}=2 I_{3}$
allow 1 mark for each correct description given in words
(c) $3=I^{2} \times 12$
$\mathrm{I}=\sqrt{\left(\frac{3}{12}\right)}$
$\mathrm{I}=0.5(\mathrm{~A})$
$Q=0.5 \times 60=30$
allow $Q=$
their calculated $I \times 60$
$Q_{\text {total }}=60$
allow an answer that is consistent with their calculated value of I
or
$3=1^{2} \times 12(1)$
$\mathrm{I}=\sqrt{\left(\frac{3}{12}\right)}$
I = $0.5(\mathrm{~A})(1)$
$\mathrm{I}_{\text {total }}=1.0(\mathrm{~A})(1)$
allow $I_{\text {total }}=$ their $I \times 2$
$\mathrm{Q}=1.0 \times 60=60(1)$
allow an answer that is consistent with their
coulombs or C

Q4.
(a) attempt to draw four cells in series
correct circuit symbols
circuit symbol should show a long line and a short line, correctly joined together
example of correct circuit symbol:

(b) (i) $6(\mathrm{~V})$
allow 1 mark for correct substitution, ie $V=3 \times 2$ scores 1 mark provided no subsequent step
(ii) $12(\mathrm{~V})$
ecf from part (b)(i)
18-6
or
18 - their part (b)(i) scores 1 mark
(iii) $9(\Omega)$
ecf from part (b)(ii) correctly calculated
3 + their part (b)(ii) / 2
or
18/2 scores 1 mark
provided no subsequent step

Q1.
(a) Complete the sentence.

Choose the answer from the box.

```
charge energy potential difference resistance
```

Electric current is the rate of flow of \qquad .

Figure 1 shows a parallel circuit.
Figure 1

(b) Calculate the current measured by ammeter \mathbf{A}_{2}.

$$
\text { Current }=
$$ A

(c) The circuit is connected for 300 s

The total current in the circuit stays at 0.56 A
Calculate the total charge flow.
Use the equation:

$$
\text { charge flow }=\text { current } \times \text { time }
$$

\qquad
\qquad
\qquad
\qquad
Charge flow = \qquad C
(d) The potential difference supplied by the battery is 4.5 V

Calculate the total energy transferred in 300 s
Use the equation:

energy transferred $=$ charge flow \times potential difference

Use your answer to part (d).
\qquad
\qquad
\qquad
\qquad
Energy transferred = \qquad J
(e) Figure 2 shows a series circuit.

Figure 2

Resistor $\mathbf{R}_{\mathbf{2}}$ breaks.
What happens to the reading on the ammeter?
\qquad
(f) Figure 3 shows a parallel circuit.

Figure 3

Resistor $\mathbf{R}_{\mathbf{3}}$ breaks.
What happens to the readings on the ammeter?
Ammeter \mathbf{A}_{1} \qquad
Ammeter \mathbf{A}_{2} \qquad

Q2.
A student investigates how the length of a piece of wire affects its resistance.
The diagram shows the apparatus used.

(a) Write the equation which links current, potential difference and resistance.
\qquad
(b) For the experiment shown in the diagram, the student recorded:

- a potential difference of 3.22 V
- a current of 2.18 A

Calculate the resistance of the length of wire between the crocodile clips.
Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω (4)
(c) The student used constantan wire.

The resistance of constantan only changes a small amount when its temperature changes.

Suggest why using constantan is an advantage in this experiment.
\qquad
\qquad
\qquad

Q3.
(a) A student set up the circuit shown in the diagram. The student uses the circuit to obtain the data needed to plot a current - potential difference graph for a diode.

(i) Draw, in the boxes, the circuit symbol for a diode and the circuit symbol for a variable resistor.

(ii) The student made two mistakes when setting up the circuit.

What two mistakes did the student make?

1. \qquad
\qquad
2. \qquad
\qquad
(b) After correcting the circuit, the student obtained a set of data and plotted the graph below.

(i) At what potential difference did the diode start to conduct an electric current?
\qquad V
(ii) Use data from the graph to calculate the resistance of the diode when the potential difference across the diode is 0.3 V .
\qquad
\qquad
\qquad
Resistance $=$ \qquad ohms

Q4.
The diagram shows a temperature sensing circuit used to control a heating system

(a) What quantity does the ammeter measure?
(b) The current in the circuit is 3.5 mA when the potential difference across the thermistor is 4.2 V

Calculate the resistance of the thermistor.
\qquad
\qquad
\qquad
Resistance = Ω
(c) Calculate the charge that flows through the thermistor in 5 minutes when the current is 3.5 mA .
\qquad
\qquad
\qquad
Charge $=$ C
(c) The charge that flows through a new shower in 300 seconds is 18000 C .

The new electric shower has a power of 13.8 kW .
Calculate the resistance of the heating element in the new shower.
Write down any equations you use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Resistance $=$ Ω

Mark schemes

Q1.

(a)

extra lines from circuit symbols negate the mark
(b) charge
(c) $\quad 0.13(\mathrm{~A})$
(d) 0.56×300

168 (C)
an answer of 168 (C) scores 2 marks
1
1
(e) 168×4.5

756 (J)
an answer of 756 (J) scores 2 marks allow ecf from part (d)
(f) decreases to zero allow reads zero
(g) (A1) decreases to zero
allow reads zero
(A2) decreases
do not accept 'to zero' for A2
(h) thermistor
(i) answer in range 160-165 (Ω)

Q2.

(a) 17.8
accept 17.7 or 17.9
(b) potential difference $=$ current \times resistance

$$
\text { accept } V=I R
$$

(c) $3.22=2.18 \times R$
$R=3.22 / 2.18$
$R=1.477(064 \ldots) \Omega$
$R=1.48(\Omega)$
an answer of $1.48(\Omega)$ scores 4 marks an answer that rounds to $1.48(\Omega)$ scores 3 marks
(d) temperature of wire will increase during experiment
allow description of this in terms of energy being dissipated, $P=I^{2} R$
if constantan is used, this will not have a significant effect on results
(e) 50.0 cm
allow other ways of indicating the anomalous result in the table (eg ringing 5.26)
(f) the ammeter gave a reading that was too low

Q3.
(a) (i) 1.7
(ii) 51
or
$30 \times$ their (i) correctly calculated
allow 1 mark for correct substitution i.e. 1.7 30
or their (i) $3 \underline{Q}$

```
coulomb / C
do not accept c
```

(iii) 612
or
their (ii) $\times 12$ correctly calculated
or
their (i) $\times 360$ correctly calculated
allow 1 mark for correct substitution i.e. $E=12 \times 51$
or $12 \times$ their (ii)
or their (i) $\times 360$
(b) ions vibrate faster
or
ions vibrate with a bigger amplitude
accept atoms for ions throughout
accept ions gain energy
accept ions vibrate more ions start to vibrate is insufficient
electrons collide more (frequently) with the ions
or
(drift) velocity of electrons decreases
electrons start to collide is insufficient
there are more collisions is insufficient, unless both electrons and ions are implied

Q4.
(a) (i) symbol for a diode

symbol for a variable resistor

(ii) voltmeter is in series or voltmeter is not in parallel
ammeter is in parallel or ammeter is not in series
accept an answer in terms of how the circuit should be corrected
voltmeter and ammeter are wrong way around is insufficient
(b) (i) $0.2(\mathrm{~V})$
accept any value between 0.20 and 0.21 inclusive
1
(ii) 37.5
allow 1 mark for I = 0.008
or
allow 2 marks for correct substitution, ie $0.3=0.008 \times R$
or
allow 1 mark for a correct substitution using I = 0.8 or I = 0.08
or $I=0.009$
or
allow 2 marks for answers of 0.375 or 3.75 or 33(.3)
(c) (i) 25
allow 1 mark for obtaining period $=0.04$ (s)
(ii) diode has large resistance in reverse / one direction
so stops current flow in that / one direction
allow diodes only let current flow one way / direction
allow 1 mark for the diode has half-rectified the (a.c. power) supply

Q1.
(a) current
(b) $\quad 4.2=3.5 \times 10^{-3} \times \mathrm{R}$
$R=4.2 / 3.5 \times 10^{-3}$
$R=1200(\Omega)$
an answer of $1200(\Omega)$ scores 3 marks an answer of 1.2 scores $\mathbf{2}$ marks
(c) conversion from minutes to seconds (300 s)
$Q=0.0035 \times(5 \times 60)$
$Q=1.05 C$
an answer of 1.05 (C) scores 3 marks
(d) (potential difference) increases
(because thermistor) resistance increases
2nd mark dependent on scoring 1st mark
$R=13800 / 60^{2}$
$3.83(\Omega)$
allow 3.83(Ω) with no working shown for 5 marks answer may also be correctly calculated using $P=I V$ and V $=I R$ if 230 V is used.

