Dr. Watts




Timetable and Assignment Submission

Timetable — Tutorials

1 (Baseline assessment)

2 (Trigonometry and Geometry)
3 (Limits and Derivatives)

4 (Infinite Series)

5 (Generating Functions)

6 (Final assessment)

7 (Feedback)

Timetable — Homework Assignments

Tutorial 1 Baseline Assignment
Tutorial 2 Assessments 1
Tutorial 3 Assessments 2
Tutorial 4 Assessments 3
Tutorial 5 Assessments 4

Page | 2



Contents

Course Rationale
Glossary
Tutorial 1
Tutorial 2
Tutorial 3
Tutorial 4
Tutorial 5
Tutorial 6

Tutorial 7

- Ny o0 O b

30
37
38



Course Rationale

Mathematics is a beautiful system of logic that initially begins with several basic assumptions.
We may then build on these assumptions (or axioms) to create a larger self-consistent system
of statements or rules. This is what it means to derive results from first principles.

We often learn the rules of how to manipulate mathematics without fully understanding how
these rules were originally derived. The true history of mathematics is the story of how these
rules were discovered and how this knowledge continues to build.

This course will cover 4 interconnected areas of mathematics and seek to demonstrate how
many of the rules that may seem natural and innate to us, are perhaps not truly so immediately
obvious.

Do we really understand what the trigonometric functions represent? Do we know how their
derivatives were determined? Do we know how to prove the link between trigonometry and
exponential functions? Do we know about the more complex tools used to determine general
terms of sequences?

These questions will be answered throughout this course, and hopefully provide a deeper
insight into the inner workings of mathematics. Ultimately, mathematics is about discovery
rather than the memorisation of rules, and this course will give us a glimpse of this principle at
work.

Page



Subject Vocabulary

Mathematical Term Mathematical Definition Example

Page | 5



1.1

(1. Baseline Assessment

Pre-SEF

Before starting the course, you will be required to take part in completing a Self
Evaluation Form. This form will ask you a series of questions to gauge your confi-
dence and opinions on various education related topics, and will serve as a foun-
dation on which to judge the effectiveness of the course.

Your answers to the questions in the Pre-SEF will not influence your final grade of
the course in any way, and should be answered as truthfully as possible.

Baseline Assessment

You will be provided with a series of technical questions to determine your current
level of mathematical understanding. These questions will target specific knowl-
edge areas that are related to the course content you will be covering.

It is expected that at the conclusion of the course, you would subsequently feel
more comfortable answering a similar series of questions.
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Objective

This section will explore the definition of the classic trigonometric functions from
first principles. No assumptions will be made about their properties, instead we
will derive these properties directly from the initial definition. Thus by the end of
this tutorial, we should be capable of proving and re-deriving the trigonometric
functions geometrically.

Practice: Forming a Unit Circle

We begin by drawing a circle with a centre at C and a radius of 1. We then mark
an arbitrary point A on its circumference:

Page |



L

2.3 Practice: Rediscovering Pythagoras

We now form a right angled friangle with the line segment between the centre of
the circle C and the arbitrary point A acting as the hypotenuse. We also label the
angle made by the two line segments meeting at the centre C as angle 6:

It should be clear that by moving the point A around the circumference of the cir-
cle, we would also be varying 6 and subsequently obtain varying values of x and
y, the horizontal and vertical sides of the triangle respectively. Let us now define
functions that would allow us to calculate the values of the side lengths x and y,
given the angle 6.

Definition 2.2.1 — Sine and Cosine. Given a right angled triangle with longest side
of length 1 and some other angle 6 we define the function sin(8) as the length
of the side directly opposite the angle 6 and cos(6) as the length of the side
adjacent to the angle 6 which is not the longest side.

Note that we will make no initial assumptions about our newly defined functions
sin(8) and cos(8). Thus far we know only their definitions, and nothing yet about
their properties or behaviour. However we can begin to derive further information
about this pair of new functions by considering the geometric properties of our
diagram.

Practice: Rediscovering Pythagoras

Let us now consider our triangle with sides of length 1, x, y. We may make a ge-
ometrical arrangement of 4 instances of this triangle, in addition to two squares
with side lengths x and y. Such an arangement is shown in Arrangement 1 and
has a total side length of x+y, thus a total area of (x+y)?.

Alternatively, consider an arrangement using the same 4 tfriangles, combined with
a single square of length 1. Such an arrangement is shown in Arrangement 2.
Notice that once again the total side length and total area are x+y and (x +y)?
respectively.
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Chapter 2. Trigonometry and Geometry

Therefore by removing the 4 triangles from both amangements, we may conclude
that the remaining areas are identical. That is to say, that the areas of two squares
with sides lengths x and y total fo the area of the square of length 1. Thus we prove
thatx2 +y? = 1.

Arrangement 1

Arrangement 2

We have shown geometrically that x2 +y* = 1, and since x and y are by definition
sin(6) and cos(60), we have derived the Pythagorean Trigonometric Identity.

Theorem 2.3.1 — Pythagorean Trigonometric Identity. cos*(8)+sin?(8) =1 for all
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2.4 Practice: Deriving the Tangent Function

Practice: Deriving the Tangent Function

We now define the tangent function, appropriately named, as the length of the
tangent to the circle starting from point A and connecting to the point at which the
tangent crosses the horizontal passing through the centre C. It may subsequently
be shown through the application of similar triangles that tan(6) is indeed equal to

Cﬂ:((g) as we might already suspect:

Doubling Angles

Consider the graphic on the following page, and the properties it demonstrates
with regards to the pair of functions sin(a+ ) and cos(a+ ). Incredibly, geometry
is able to provide us the double angle formulas for figonometry, and ultimately
this is how they are originally derived. This single image captures a pair of frigono-
metric identities that are often assumed without justification.
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Chapter 2. Trigonometry and Geometry

sin(3) cos(a)

sin(a + 3)

Theorem 2.5.1 — Double Angle Identities.
sin(a + B) = sin(a) cos(B) +cos(o) sin(f)

cos(a+ ) = cos(a) cos(B) — sin( ) sin(B)

2.6 Assessments
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3.1

3.2

Objective

This section will explore the fundamentals of calculus, and the definition of deriva-
tives. Using the properties of frigonometric functions that we derived in the previ-
ous tutorial we will determine how to differentiate them. In order to accomplish
this, we will also introduce the concept of limits and understand how to take limits
of common functions.

Practice: Defining the Derivative Informally
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3.3

Chapter 3. Limits and Derivatives

Let us consider fora moment what we mean by the derivative of a function y = f(x).

Without making reference to any further formulas, the derivative of a function at
a specific point x = a, is defined as the instantaneous rate of change of y with
respect to x when x=a.

This may be more commonly interpreted as the gradient of f(x) when x=a, and
can be determined by calculating the slope of the tangent line at the point where
x = a. However if we wish to come up with a formal mathematical definition, we
will need to make use of limits.

Practice: Experimenting with Limits

We make use of limits when we wish to consider the behaviour of a function as its
input approaches a specific value, particularly when the function would ordinarily
not be defined at that value.

To see this principle in action, consider the following function:

©-1

x—1

When x =1 it is clear that this results in a division by 0, and therefore the function is
undefined at this value. However if we consider a sequence of values of x which
tends fowards x =1 such as 1.1,1.01,1.001, 1.0001,... we see that the corresponding
outputis 3.31,3.0301,3.003,3.0003,... respectively. Thus it appears the output tends
towards some fixed value within the vicinity of 3.

Notice that if we factorise the function as shown below, we may make some
progress in determining this mystery value:

o, | _ = 1)(®+x+1) — (Ptxt1))

x—1 x—1

When the newly simplified function above is supplied with x =1 we now clearly
arrive at an output of 3, contrary to our previous attempts which resulted in an
undefined result. We may summarise this result with the following notation:

A formal definition of this limit notation does exist, though this is not reproduced
here. Instead, consider the examples below, and satisfy yourself that the values as-
signed to these limits may seem reasonable, when considering the neighbouring
values:
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3.4

3.4 Practice: Defining the Derivative Formally

lim4x =12
x—3

lim cos(x) — 1 _o
x—0 X

It proves beneficial fo the understanding of limits, to use graphical software to
plot these functions and visualise their behaviour when x tends towards its limiting
value. This is particularly the case for the final two limits which include the sine and
cosine functions:

sin(x)
x
cos(xz) —1
05 —t
1 05 05 1 15 2

Practice: Defining the Derivative Formally

Let us now define the derivative of a function formally, making use of this limit
terminology. As discussed initially, the derivative of a function y = f(x) atx=a'is
merely the limit of the gradient of the tangent line as x tends towards a.
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Chapter 3. Limits and Derivatives

Definition 3.4.1 — Derivative. Given a function y = f(x) we say that the derivative
of the function at x =ais f'(a) where f'(x) is defined:

i L) = £

h—0 h

fx) =

3.5 Practice: Derivative of Sine

To showcase the power of limits, we may now derive the derivative of the sine
function from first principles:

£(x) = sin(x)

sin(x+h) — sin(x)

m sin(x) cos(h) + cos(x) sin(h) — sin(x)

h—0 h
. (cos(h)—1) . . sin(h)
= ]111_r)1(1) — sin(x) + ]111_% > cos(x)
= sin(x) lim {eostiy— 1) + cos(x) lim sinlh)
h—0 h—=0 h

= sin(x) x 1 +cos(x) x 0

= sin(x)
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3.6

3.7

3.6 Practice: Derivative of Cosine

Practice: Derivative of Cosine

We may additionally determine the derivative of cosine, which demonstrates an
interesting cyclical pattern within the derivatives of these two frigonometric func-
tions:

£(x) = cos(x)

cos(x+h) —cos(x)

0= iy
. cos(x)cos(h) —sin(x) sin(/) — cos(x)
= h

sin(h)

. (cos(h)—1) ‘ '
= tim O 7D o5 ) —tim T2 i
— COS(_x) lim w _ Sin(x) T Sln(h)
A= h—0

= cos(x) x 0 —sin(x) x 1

= —sin(x)

Assessment
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4.1

Objective

This section will explore the power of functions with infinite numbers of terms. We
will learn the process by which we may characterise any function as an infinite
polynomial. We will then apply this to the trigonometric functions, using the deriva-
tives that we discovered in the previous tutorial. Finally, we aim to derive a funda-
mental formula of complex mathematics.

Practice: Forming a General Function

We know that all linear functions may be written in the form mx+ ¢ and all quadrat-
ics are of the form ax® + bx +¢. However, it would be beneficial if we could take
this process several steps further, and find a way of representing any function of
x. Let us then assume that for any function f(x) we might be able to represent this
using the following infinite series:

f(x)=ap+aix+ax* +azx + -+ apF +...

We have not proved that there is a set of constants ¢; that would make this equality
valid, orindeed if such a set of constants exists, that it would be unique. However,
let us work with assumption, and experiment with the results it might bring.

Practice: Derivatives at Zero

Let us take repeated derivatives of this infinite sum:
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4.4

4.4 Practice: Trigonometric Taylor Series

f(x):aO+a|x+612x2—|—a3x3+...+akxk+'..
fl(x)=a|+2a2x+3a3x2+...+kakljc—l+m
fz(x):(2)(])a2+(3)(2)a3x+“‘+(k)(k—l)akxk_2+_..

£E) =)@ (Maz+- -+ (k) (k= 1) (k— )@ +...

Now let us consider the derivative at x =0 in each instance:

f(0)=ao
710)=a
20)=(2)(1)ay

£0)=(3)(2)(1)as

Now the pattern becomes clear, and we may define the following relationship in
general:
f10)=nla, < a,= %'O)

So it seems we have determined a unique value for all the constants a¢; which may
be determined by taking successive derivatives of the function f(x). Such an infi-
nite polynomial expansion is known as a Taylor series. We may now continue this
investigation further, by applying this principle to functions which may be differen-
tiated indefinitely; namely the frigonometric functions.

Practice: Trigonometric Taylor Series

We know that sin(x) and cos(x) both have the following cycling sequence of deriva-
tives:

sin(x) — cos(x) — —sin(x) — —cos(x) — sin(x) — cos(x) — ...

Therefore when x = 0 we respectively obtain the following cycling values:
0-1-20—=--1=20—21—...

If we now plug these values into our function that generates the polynomial con-
stants a; we may obtain a pair of infinite series for the sine and cosine functions:

Page



Chapter 4. Infinite Series

o x} X,j x7
sm(x)—x—,;'-}—i $+
x2 x4 x6
cos(x )_l_§+5_5+

Let us take note of these two series expansions, and turn our attention to the ex-
ponential function.

4.5 Practice: Exponential Taylor Series

The exponential function f(x) = ¢* is another function that lends itself well to re-
peated differentiation. In fact we know that this function is its own derivative, and
therefore the derivative of any order when x = 0 will always be ¢ = 1. This gives us
the appropriate expansion:

2 x3 x4 xS 6 74

X X
Feltmt Ty bt et bt

6! 7!

4.6 Practice: Deriving Mathematical Beauty

Let us now take a direct route to derive a most beautiful result of mathematics.
Consider now substituting the variable x with a constant multiple ix where i = v/—1
is the imaginary constant. Let us also consider multiplying the sine function by the
same imaginary constant. We leave the cosine function unchanged. We then
obtain the following 3 expansions:

x3)c5 /

% I8 s § X

lSll’l(x)—lx—ty ’5_ ?—F -
x> x* %0

Esp=1-grtg—mt

2! 3’ 41 5 6! 7!

Notice that the first fwo expansion directly sum to make the third. This then gives
us an extremely valuable result.

Theorem 4.6.1 — Euler’s Formula. e® = cos(x) + isin(x)
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4.7 Assessment

Finally we may substitute the value x = & into our new formula, and we obtain the
fact that e = cos(x) +isin(x) = (—=1) + (0) = —1.

Theorem 4.6.2 — Euler’s Identity. ¢®+1=0

4.7 Assessment
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5.1 Objective

This section will explore an extremely useful tool within mathematics, known as
generating functions. These functions give us the power to morph a sequence
across various domains, from sequence to polynomial to function. We will learn
how to determine the generating function of a sequence, and ultimately learn
the proof by which we can find any given term of the Fibonacci sequence.

5.2 Practice: From Sequences to Polynomials

Within mathematics, it often becomes useful to transform objects from one con-
text to another, so that the tools of the alternative context may be used to ma-
nipulate the object. Often we may also fransform the object back, carrying the
newly found information with us. To take this abstract idea and provide a con-
crete example, we will consider converting number sequences info polynomials.
The rule for doing so is incredibly simple.

Definition 5.2.1 — Generating Function. Given asequence of numbers F(0),F(1),F(2),F(3),...
we define the equivalent polynomial (known as a generating function) of the
sequence as G(x) = F(0) + F(1)x+F(2)x* + F(3)x* +....

Let us consider a few examples to make this process clear:
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5.3 Practice: From Polynomials to Generating Functions

11 1

E,g,—z,... ="

=% s

01—
L 3 4

<—>x—%x2+
LT L e =31 0" 408 0 s
L=T, 1, =~y s =1 =g = P
1,0,0,0,0,... 1
0,0,1,0,0,... > x>

1,0,1,0,1,... +— 1+ x> +x*+...

Practice: From Polynomials to Generating Functions

For an infinite sequence, we obtain an infinite polynomial. However, we should
now be aware that infinite polynomials may sometimes be represented in terms of
simpler functions or algebraic expressions. Thus we may sometimes encapsulate
an infinite sequence within a single simple mathematical function. This is why we
use the term generating function to refer fo such an object. We can see examples

of these polynomials being collapsed below:

1 1 1
x—§x2+§x3—zx4+...<—>log(l +x)

1
T+x+x2+x 4+ 4. o
==K

1
l—x4+x2 -4+ 4. — ——

14+x

1+—1

(R TR -

1 —x2
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Chapter 5. Generating Functions

Practice: Fibonacci

Few numerical sequences gain the same attention as that of the Fibonacci se-
qguence. The sequence itself has a simple recursive definition, yet describes a pat-
tern of numbers that appears in various mathematical contexts. Pascal’s triangle
is but one of these occurrences.

1

56 70 56 28 8 1
36 84 126126 84 36 9 1
10 45 120 210 252 210 120 45 10 1

Definition 5.4.1 — Fibonacci Sequence. Define the nth term of the Fibonaccisequence
as F(n) where the function F has the following properties:

F(0)
F(1)
F(n)

0
1
F

(n—1)+F(n—-2) n>2

Practice: Tackling the Fibonacci Sequence

With the new tool of generating functions at hand, we may now begin the en-
deavour of finding a closed form expression of F(n) the nth term of the Fibonacci
sequence, so that we may find the nth term directly rather than calculate n recur-
sive steps. We begin with the generating function G(x) of the Fibonacci sequence:

Gx)=F(0)+F(1)x+FR)2+FQB)x>+- -+ F(n)2" +...

Let us now multiply this expression by x and x? to obtain two further expressions:
G(x)=F(0)+F(1)x+FQ2)xX*+F(3)x>+---+F(n)x"+...
xG(x) =FO)x+F()x+F2)x* 4+ +F(n—1)"+ ...

PGx) =F(0)2+F1)>+ -+ F(n—2)x"+...
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5.6

5.6 Assessment

We may now apply a clever addition and subtraction of these expressions that
lines up with the Fibonacci recursive formula. Specifically we may subtract the 2
new expressions from our original expression:

G(x) —xG(x) —x*G(x) = F(0) + F(1)x — F(0)

= (1l —x—=2)Gx)=x

X
= = Tt

We now have a clean expression of the generating function of the Fibonacci se-
qguence. However this does not yet tell us the nth term of the sequence for any
given n. In order to accomplish this, we need to expand into an infinite sequence
once again. This will be left as an exercise. However the ultimate conclusion of
this process is a surprising looking formula.

Theorem 5.5.1 — Fibonacci Formula.

(59 -(57)]

F(n)z—l-g

7

Assessment
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6.1

Final Assessment

To complement the baseline assessment you took at the start of the course, you
will now be given a final assessment in the form of a final project. This will allow
you to review the content that you have covered throughout the course and el-
ements of your own, driven by your own research in related mathematical topics
of interest.

This assessment will give you the opportunity to demonstrate how far you have
come in your knowledge acquisition, and provide an opportunity to produce an
item of mathematical writing that expresses your personal interests. Your project
will be formally assessed against a common set of criteria used by all schools par-
ticipating with the Briliant Club, and will form the bulk of your final grade at the
end of the course. Good luck!
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Tutorial 7 - Feedback

STOP

LISTEN

YOU'RE GETTING

FEEDBACK

What is the Purpose of Tutorial 7¢

To receive feedback on final assessments.
To share examples of best practice with the other pupils in your group.

[ ]
[ ]
e To write targets for improvement in school lessons.
[ ]

Final assessment feedback

To reflect on the programme including what was enjoyed and what was challenging.

What | did well... What | could have improved on...
° °
° °
° °

My target for future work is...
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Reflecting on Uni Pathways

What did you most enjoy about Uni Pathways?

What did you find challenging
about the programme?

How did you overcome these challenges?
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First Principles:
Understanding How Mathematics
Works

researchersinschools.org



