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Timetable and Assignment Submission

Timetable - Tutorials

B S O

03.12.2019 12:00pm-3:45pm The University of

Cambridge
2 09.01.2019 3:45pm-4:45pm
3 16.01.2019 3:45pm-4:45pm
4 23.01.2019 3:45pm-4:45pm
5 30.01.2019 3:45pm-4:45pm
6 (Feedback)
7 (Feedback)

Timetable - Homework Assignments

Tutorial 1 Baseline assignment 10.12.2019
Tutorial 2 Functions of 2 variables 16.01.2019
Tutorial 3 Limits of sequences 23.01.2019
Tutorial 4 Summing all the whole numbers 30.01.2019
Tutorial 5 Draft final assignment

Assignment Submission — Lateness and Plagiarism

10 marks deducted

Some plagiarism 10 marks deducted
Moderate plagiarism 20 marks deducted
Extreme plagiarism Automatic fail
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Course Rationale

Did you know that you can win $1,000,000 by solving a maths problem? In this course we will learn
about prime numbers, infinite sums and functions of 2 variables, and relate this to arguably the most
important unsolved problem of all fime.

At the turn of the millennium $1,000,000 was attached to each of 7 important
mathematical problems.

There are many unsolved problems in mathematics, and whilst studying this course we will develop an
appreciation for the evolving nature of the subject.

In this course we will focus on one of the so called millennium problems. We will explore the Riemann

hypothesis, which was first conceived in 1859, and show how an understanding of mathematical
objects called L-functions could hold the key to solving the mystery of this $1,000,000 problem.
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Uni Pathways Mark Scheme 2019 - problem-set assignments

Subject knowledge

Critical thinking

Skills

Knowledge and
understanding

Research and
evidence

Developing an
argument

Critical
evaluation

1t (70-100)

All content included and materials
used are relevant to the general
fopic and to the specific
question/title

Good understanding of all the
relevant topics.

Technical terms are defined and
used accurately throughout
Clear justification of how the
material and content included is
related to the specific issues that
are the focus of the assignment

2:1 (60-69)

Most of the content included is
relevant to the general topic and
to the specific question/title
Good understanding of most the
relevant topics

Technical terms are used
accurately but not always clearly
defined.

Adequate justification of how the
contfent included is related to the
specific issues that are the focus of
the assignment

2:2 (50-59)

Some of the content included is
relevant to the general topic and
to the specific question/title

Good understanding on some of
the relevant topics but occasional
confusion on others.

Scientific terms are used mostly
accurately with occasional
confusion and often not defined.
Some justification on how the
contfent included is related to the
specific issues that are the focus of
the assignment

3rd (40-49)

The content included
and materials used are
not applied to the
question/fitle in a
relevant manner

There is confusion in
how understanding of
the topics is expressed

Mark
/100

Uses evidence/calculations to
support claims/assertions/ideas,
consistently clearly and
convincingly

Data is effectively analysed, and
appropriate
assumptions/conclusions are
reached

Includes rich sources of research
findings, data, quotations or other
sourced material as evidence for
the claims/ideas

Uses evidence/calculations to
support claims/assertions/ideas,
mostly clearly and convincingly
Data is analysed and the
assumptions/conclusions that are
reached are mostly appropriate
Includes adequate sources of
research findings, data, quotations
or other sourced material as
evidence for the claims/ideas

Uses evidence/calculations to
support claims/assertions/ideas, at
times clearly and convincingly
There is an attempt to analyse data
is and draw
assumptions/conclusions

Includes some sources of research
findings, data, quotations or other
sourced material as evidence for
the claims/ ideas

Data is presented
largely without analysis

Argument/proof is exceptionally
well-developed and well-justified
Uses content from the tutorials in
an unfamiliar context and does so
accurately and confidently.

[e]

[¢]

Argument/proof is clear and well-
developed, and position is justified
Uses some content from the tutorials
in an unfamiliar context, but not
always accurately

Argument/proof is clear but not
well-developed

Limited use of content from the
tutorials in other contexts

Sometimes the
argument/proof is not
clearly established
Limited use of content
from the tutorial and
often inaccurately

Effectively critiques the problem set
and effectively establishes a
thorough response fo it

o

Some evidence of critiquing the
problem set and establishes a
reasonable response to it

Limited evidence of critiquing the
problem set and establishes a
response to it that has some
coherence

The problem is explored
in the work but without
explanation
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Structure and
presentation

Language and
style

Ideas are presented in paragraphs
and arranged in a logical structure
that is appropriate for the
assignment

The infroduction clearly outlines
how the essay/report will deal with
the issues

The conclusion summarises all the
main points clearly and concisely
All calculations, formulas and
methods are clearly structured,
clear to follow and correct

Tables and graphs are effectively
constfructed including appropriate
headings, units and scales.

All sources are referenced
correctly in an agreed format

Ideas are presented in paragraphs
and arranged in a structure that is
mostly appropriate for the
assignment

The infroduction adequately
describes how the essay/report will
deal with the issues

The conclusion summarises most of
the main points clearly
Calculations, formulas and
methods are mostly structured,
clear to follow and correct

Most tables and graphs are well
consfructed

Most sources are referenced
correctly in an agreed format

Ideas are presented in paragraphs
and arranged in a structure

The introduction mentions how the
essay/report will deal with the
issues

The conclusion summarises some
of the main points clearly
Calculations, formulas and
methods are not always
structured, clear to follow and
correct.

Some tables and graphs are well
consfructed but contains some
errors

Some sources are referenced
correctly in the agreed format
with occasional errors

Ideas are presented in
paragraphs but there is
a lack of structure in
how the work is
presented

The work lacks an
intfroduction that
establishes the scope of
the question

The work lacks a
conclusion that
summarise the main
points raised

Work is not referenced
accurately

No spelling, grammar or
punctuation errors

Writing style consistently clear, tone
appropriate and easy to follow
Accurate and consistent use of
technical language and
vocabulary

Minimal spelling, grammar or
punctuation errors

Writing style mostly clear, fone
appropriate and easy to follow
Some attempts of using technical
language and vocab alary, but not
always accurate

Some spelling, grammar or
punctuation errors

Writing style moderately clear,
fone appropriate and easy to
follow

Use of simple language and
vocabulary effectively but
struggles to use technical
language

There are a significant
number of spelling,
grammar and
punctuation errors

Use of simple language

and vocabulary
effectively but a lack of

technical language

Overall Mark for written element (average of the é marks from the

criteria above)/100

Problem Set mark/100

Final mark/100
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Baseline Assignment (problem-set): Pupil Feedback Report

Name of Pupil

Name of School

Name of RIS teacher
‘ ‘ What do we know about the twin prime/Goldbach conjecture (deleting
Title of Assignment where appropriate)?

How your assignment is graded:

1st 70+ Performing to an excellent standard at A-level
2:1 60-69 Performing to a good standard at A-level

2:2 50-59 Performing to an excellent standard at GCSE
gl 40-49 Performing to a good standard at GCSE
Working towards a pass 0-39 Performing below a good standard at GCSE
Did not submit DNS No assignment received by The Brilliant Club
Any lateness 10 marks deducted

Some plagiarism 10 marks deducted

Moderate plagiarism 20 marks deducted

Extreme plagiarism Automatic fail

Marks

FINAL MARK /

OWERALL AR 109 100(including any deductions)

DEDUCTED MARKS

FINAL GRADE

If marks have been deducted (e.g. late submission, plagiarism) the feacher should give an explanation in this section:

Mark Breakdown and Feedback

Knowledge and Understanding Research and Evidence
mark mark
Developing an Argument Critical Evaluation
mark mark
Structure and Presentation Language and Style
mark mark
Problem Set

F’oge\7



Final Assignment (problem-set): Pupil Feedback Report

Name of Pupil

Name of School

Name of RIS teacher

Title of Assignment

How your assignment is graded:

1sf 70+ Performing to an excellent standard at A-level
2:1 60-69 Performing to a good standard at A-level

2:2 50-59 Performing to an excellent standard at GCSE
3rd 40-49 Performing fo a good standard at GCSE
Working fowards a pass 0-39 Performing below a good standard at GCSE
Did not submit DNS No assignment received by The Brilliant Club
Any lateness 10 marks deducted

Some plagiarism 10 marks deducted

Moderate plagiarism 20 marks deducted

Extreme plagiarism Automatic fail

Marks

FINAL MARK /

OVERALL MARK /100 100(including any deductions)

DEDUCTED MARKS FINAL GRADE

If marks have been deducted (e.g. late submission, plagiarism) the feacher should give an explanation in this section:
Mark Breakdown and Feedback
Knowledge and Understanding Research and Evidence
mark mark
Developing an Argument Critical Evaluation
mark mark
Structure and Presentation Language and Style
mark mark
Problem Set

Poge|8



Subject Vocabulary

Definition In a sentence
An informed mathematical

guess that has not been
verified to be true.

A number that divides another | 3is a divisor of 6 as 6 =2 x 3.

A rule to assign an input to an
output number.

A number (greater than 1) with
only 1 and itself as divisors.

The product of 2 numbers is The product of 2 and 3 is 6.
found by multiplying them
together.

A quadrant of a graph is ' of
the graph formed from the
intersection of the axes.

A pair of primes separated by (3,5), (5.7) and (11,13) are all
2. twin primes.
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Tutorial 1 - Open problems

What is the Purpose of Tutorial 1?
By the end of this tutorial | will be able to...

e Recognise that there are many important unsolved problems in mathematics, as exemplified by
the millennium prize problems

e Understand the argument that tells us the primes do not run out
e Describe the notion of a twin prime and describe the twin prime conjecture

Can you identify
1. The first 10 prime numbers
2. Any pairs of primes separated by 2 or 4
3. Any pairs of primes separated by 3 or 52
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Why is it almost always the case that pairs of primes are separated by an even number?

The millennium problems:

There are many unsolved problems in mathematics. In this course we will focus on a problem with a
reward of $1 000 000 for its solution.

Activity 1: Can we run out of primes?
With a pencil you should fill in the blanks with the words provided.
If the primes run out we can them as pi1, p2, ... and pn.

The number p1 xp2 X ... pn + 1 is not by p1, P2, ... or pn as it leaves a remainder of
after being divided by p1, p2, ... or pn.

Therefore there must be a primethat __ beinthelist:the primes___ run out.
Words: divisible, add, multiplied, can, cannoft, one, two, list

Unsolved problem 1 - the twin prime conjecture:

The twin prime conjecture says that the twin primes do not run out.

Activity 2:

What are 2, 4, 6, 8 and 10 written as the sum of 2 primese Can any be written in more than 1 way?

Unsolved problem 2 - the Goldbach conjecture:

The Goldbach conjecture says that every even number can be written as the sum of two primes.
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Baseline assignment:

Title:

What do we know about the twin prime/Goldbach conjecture (deleting where appropriate)?
Instructions:

Problem set:

Fully worked solutions should be provided to the questions.

Written report:

At least 250 words should be written on 1 of the open problems introduced in the tutorial.
Baseline assignment success criteria:

Knowledge and understanding: Include content that is relevant to the topic and title. Include key
words from the glossary and demonstrate that you understand them by explaining what they mean
and how they relate to the topic.

Research and interest: Include research findings from a wide range of sources. As well as using the
sources provided, you should be discovering some sources yourself from the independent work that
you do outside of tutorials.

Critical evaluation: Include critique and evaluation of the problem set.

Structure and preparation: Organise your ideas in paragraphs with a logical structure. Include an
introduction that clearly defines what the assignment will contain. Make sure your calculations,
formulas and methods are clear and structured correctly. Make sure you have referenced everything
correctly.

Language and style: Make sure your spelling and grammar are accurate. Use a formal style of writing
that is appropriate for an academic essay.
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Problem set

1.

Written in the standard convention 2™ x 3™z x ..., where ny,n, . are whole numbers, what are the prime
factorisations of

i)27

ii)32

iii)24¢

2.If f(x) = x? is the rule that f squares x (so that f(2) = 22 = 4 for example), then what are
i)£(0)

i) f(3) and

i) f(=3)2

3.1f g(x) = x3 + 1, then what are
)g(0)

i) g(3) and

iii) g(—3)2
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4. What do sketches of f(x) and g(x) look like?

5.1f ¥k-1 a, meansa, + a, + -+ + a,, then what are
) Xrot k

i) YXr=q 1 and

i) Xx=1 k?

Poge|]4



6. Whatis N7, 2

. . 1 1
Can any meaning be given to Yy, 5, Xyl 7— OF L=, K?

Poge|]5



Tutorial 2 — Functions as landscapes

By the end of this tutorial | will be able to...

e Factorise whole numbers into their standard prime factorisation
e Evaluate and plot functions of 1 and 2 variables

Can you identify
1. All factors of 24
2. All prime factors of 24
3. The prime factorisation of 242

Function machines:

A function machine takes an input and performs operations on this fo give an output.
Can you give an example of a function machine?

In mathematical notation, we can write the input as x and the function as f (we don’t have to use
these letters but seem sensible. The final output will then be written as f(x).

Activity 1:

Using the notation infroduced you should give an example of a function (you may use the function
machine you thought of earlier.
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Think of a number:

Think of any number (but not too large that you'll struggle to do some mental arithmetic with it).
Now follow the steps:

1. Double it

2. Add 6

3. Double it again

4. Divide it by 4

5. Take away the number you started with

You should all have got the same number (3) at the end!

Activity 2:

Identify the function at each step of the process and draw the graph of 1 of them.

Functions of 2 variables:

The input of a function of 2 variables is an ordered pair, (x.y). As an example, we could
have f(x,y) = 2x + y?. Then (0,0) goesto 0, as 2x 0+ 02 =0and (1,1) goesto 3,
as 2x1+ 12=2+1=3,

Order matters!

What are f(0,1) and f(1,0)2
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Aclivity 3:
Another example of a function of 2 variables is 1 when x is positive and 0 if x is negative.

Can you define the function precisely and sketch it on a graph?

Homework title: Functions of 2 variables

Homework instructions: An example of a function of 2 variables should be constructed and plotted
below

Homework success criteria:;

Knowledge and understanding: Include content that is relevant to the topic and title. Include key
words from the glossary and demonstrate that you understand them by explaining what they mean
and how they relate to the topic.

Research and interest: Include research findings from a wide range of sources. As well as using the
sources provided, you should be discovering some sources yourself from the independent work that
you do outside of tutorials.
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Tutorial 3 - Infinite series

By the end of this tutorial | will be able to...

e Recognise a geometric sequence and the formula for its summation

e Calculate the limits of simple sequences and understand how the formula for the infinite
summation of a geometric sequence can be used

Sequences and series

An arithmetic sequence is one with a fixed difference between consecutive terms, and a geometric
sequence is one with a fixed ratio between consecutive terms.

Can you identify which of the following are arithmetic or geometric sequences
1.1,2,3, ...

2.1, %, Ya, ...

3.1,1,1,...2

Summation of sequences:

There is a formula to sum arithmetic and geometric sequences. For an arithmetic sequence the sum is
given by adding the first and last terms and then multiplying this by half the number of terms.

Poge|]9



Aclivity 1:

You should work out the sum for the first starter question where the last termis 10 and 100.

Activity 2:

What is the sum of the terms in the second starter question? By adding enough terms can you
exceed 2¢

What is the conclusion@

The formula for the sum of a geometric sequence is slightly more complicated than the one for the
arithmetic case:

Activity 3:
Check:

The formula provided for the geometric case can now be used to check the answers found earlier by
adding the terms one at a time.
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We can see that the formula simplifies if the number of terms is taken to infinity but the ratio must not
have a size greater than 1.

Homework title: Limits of sequences

Instructions:

Full working should be given to determine the limit as n tends to infinity of
.| 2n

Ton+1
6n?+4n?

2n24+1 °

The formula for the sum of the geometric sequence should be researched and the steps in its proof
written out.
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Tutorial 4 - A $1,000,000 problem

What is the Purpose of Tutorial 4? By the end of this tutorial | will be able to...
e Recognise the Riemann zeta function as a function of 2 variables that describes a rich landscape

e Describe some key known and conjectured properties of the Riemann landscape

The factorial function of a whole number; n, is calculated by finding the product of all whole numbers
up to n. The factorial of n, or n factorial, is written nl.

Can you calculate the following without a calculator
1.4l
2. 5!
3.10!/8!2

Poge|22



Analytic continuation:

In order for the factorial function to be smooth when taken over all numbers, there is in fact a unique
way to calculate it. To do so infroduces a function called the gamma function, which requires some
A level maths to understand.

The Riemann zeta function is a function of 2 variables expressed as an infinite sum. Like the factorial
function it isn't originally defined for all variables but can be extended.

Aclivity 1:

Key areas of input for Riemann zeta function should be labelled on a graph. These include the trivial
zeros, the critical strip and the critical line.

Page



Homework title: Summing all the whole numbers

Instructions: With reference to the analytic continuation of the Riemann zeta function at
x =- 1, you should explain in a referenced piece of writing, how it can be sensible to attribute a
negative number with the sum of all the positive whole numbers.

Homework success criteria:

Knowledge and understanding: Include content that is relevant to the topic and title. Include key
words from the glossary and demonstrate that you understand them by explaining what they mean
and how they relate to the topic.

Research and interest: Include research findings from a wide range of sources. As well as using the
sources provided, you should be discovering some sources yourself from the independent work that
you do outside of tutorials.

Page



Page |25




Tutorial 5 — L-functions: the key

By the end of this tutorial | will be able to...

e Appreciate the use of Dirichlet L-functions in understanding primes in arithmetic progressions

e |dentify another example of an L-function

Can you identify

1. The first 10 primes in the arithmetic sequence: 2, 5, 8, 11, 14, ...
2. The first 10 primes in the arithmetic sequence: 3,7, 11, 15,19, ...¢

Dirichlet L-functions

Dirichlet L-functions share many properties with the Riemann zeta function and were used to prove
that the primes don't run out even if we restrict ourselves to arithmetic sequences.

Activity 1:

The internet should be used to find 3 properties in common with the Riemann zeta function. A good
starting point is http://www.Imfdb.org/.
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http://www.lmfdb.org/

Activity 2:

Go to http://mathworld.wolfram.com/RiemannZetaFunction.ntml and use the graphing calculator to

produce 3 Riemann landscapes, zooming in to different extents. Notes and observations should be
made in the space below.

Page



Aclivity 3:

Another example of an L-function should be found together with 3 similar properties to those found for
the previous examples.
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Final assignment:

Title: The landscape of L-functions

Instructions:

Problem set:

Fully worked solutions should be provided to the questions.

Written report:

At least 1 000 words should be written in a referenced report on L-functions.
Success criteria:

Knowledge and understanding: Include content that is relevant to the topic and title.
Include key words from the glossary and demonstrate that you understand them by
explaining what they mean and how they relate to the topic.

Research and interest: Include research findings from a wide range of sources. As well as
using the sources provided, you should be discovering some sources yourself from the
independent work that you do outside of tutorials.

Critical evaluation: Include critique and evaluation of the problem set.

Structure and preparation: Organise your ideas in paragraphs with a logical structure.
Include an introduction that clearly defines what the assignment will contain. Make sure
your calculations,

formulas and methods are clear and structured correctly. Make sure you have
referenced everything correctly.

Language and style: Make sure your spelling and grammar are accurate. Use a formal
style of writing that is appropriate for an academic essay.
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Problem set

1. Written in the standard convention 2™ x 3™z x .., where ny,n, . are whole numbers, what are the
prime factorisations of

ij1é

ii)60

iii)422

2. If f(x) =x?—-1and g(x) = x3,then what are
i)£(0)

i) f(3) and

i) f(g(=1)2

3. What do sketches of f(x) and g(x) look like?
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4. What are
) YR, xk
i) Yo x*
i) Yo kxk
iv) Z;’;l% and
V) Z?ﬂ%?

vi) What do we know about the infinite sums of reciprocals of the odd powers? Please aim to write at least 2 sentences.

Poge|3]



Tutorial 6 - Feedback tutorial

STOP

LISTEN

YOU'RE GETTING

FEEDBACK

What is the Purpose of Tutorial 6?

o Toreceive feedback on your final assignment
e Torespond to the feedback from your Uni Pathways teacher

e To write targets for improvement on your final assignment

Final assignment feedback from your Uni Pathways Teacher

(Remember to look at the mark scheme to help you understand what you have done well so far, and how
you can do even better in your final assignment)

Here are three things that my Uni Pathways Teacher thought | did well in my draft assignment

Here are three things that my Uni Pathways Teacher thinks that | could do to get a higher mark in my final
assignment
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Tasks from my Uni Pathways Teacher to do during the feedback tutorial to help me improve

My response:

Actions | will take to improve my final assignment after this tutorial...

Hand in date for my final assignment:
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Tutorial 7 - Final tutorial
-
-
VA
A'A
c_JL

™

What is the Purpose of Tutorial 77

e Toreceive feedback and a grade on your final assignment.

o Toreflect on the programme including what you enjoyed and what was challenging.

e To ask any questions you may have about university.

Final assignment feedback from my Uni Pathways Teacher

Final mark: University style grade:

Feedback: Here are three things that my Uni Pathways teacher thought | did well in my final
assignment

Here are three things that my Uni Pathways teacher thinks | should remember for when | am doing this

kind of study in the future
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University

What questions do you still have about University after taking part in Uni Pathways?

Reflecting on Uni Pathways

What did you most enjoy about Uni Pathways?

et elel yieuiine. EnellREng Sloeulr ine How did you overcome these challenges?

programme?
[ ] [ ]
[ ] [ ]
[ [ ]
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Appendix 1 - Referencing correctly

When you get to university, you will need to include references in the assignments that you write, so we
would like you to start getting into the habit of referencing in your Brilliant Club assignment. This is really
important, because it will help you to avoid plagiarism. Plagiarism is when you take someone else’s
work or ideas and pass them off as your own. Whether plagiarism is deliberate or accidental, the
consequences can be severe. In order to avoid losing marks in your final assignment, or even failing,
you must be careful to reference your sources correctly.

What is a reference?

A reference is just a note in your assignment which says if you have referred to or been influenced by
another source such as book, website or artficle. For example, if you use the internet to research a
particular subject, and you want to include a specific piece of information from this website, you will
need to reference it.

Why should | reference?
Referencing is important in your work for the following reasons:

It gives credit to the authors of any sources you have referred to or been influenced by.
It supports the arguments you make in your assignments.

It demonstrates the variety of sources you have used.

It helps to prevent you losing marks, or failing, due to plagiarism.

When should | use a reference?
You should use a reference when you:

e Quote directly from another source.
e Summarise or rephrase another piece of work.
¢ Include a specific statistic or fact from a source.

How do | reference?

There are a number of different ways of referencing, and these often vary depending on what subject
you are studying. The most important to thing is to be consistent. This means that you need to stick to
the same system throughout your whole assignment. Here is a basic system of referencing that you can
use, which consists of the following two parts:

1. A marker in your assignment: After you have used a reference in your assignment (you have
read something and included it in your work as a quote, or re-written it your own words) you
should mark this is in your text with a number, e.g. [1]. The next time you use a reference you
should use the next number, e.g. [2].

2. Bibliography: This is just a list of the references you have used in your assignment. In the
bibliography, you list your references by the numbers you have used, and include as much
information as you have about the reference. The list below gives what should be included for
different sources.

a. Websites — Author (if possible), tfitle of the web page, website address, [date you
accessed it, in square brackets].

E.g. Dan Snow, ‘How did so many soldiers survive the trenches?’,

http://www.bbc.co.uk/guides/z3kgjxs#zg2dtfr [11 July 2014].

b. Books — Author, date published, fitle of book (in italics), pages where the information
came from.

E.g.S. Dubner and S. Levitt, (2006) Freakonomics, 7-9.

c. Arlicles — Author, ‘title of the article’ (with quotation marks), where the article comes
from (newspaper, journal etc.), date of the article.

E.g. Maev Kennedy, ‘The lights to go out across the UK to mark First World War's centenary’,
Guardian, 10 July 2014.
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Appendix 2 - Arlicle on the Riemann hypothesis

(https://www.ams.org/notices/200303/fea-conrey-web.pdf)

The Riemann
Hypothesis

J. Brian Conrey

ilbert, in hi= 1900 address to the Paris

International Congress of Mathemati-

cians, listed the Riemann Hypothesis as

one of his 23 problems for mathe-

maticians of the twentieth cenfury to
work on. Mow we find it is up to rwenty-first cen-
tury mathematicians! The Riemann Hypothesis
{B:H) has been around for more than 140 years, and
vel now is arguably the most exciting time in its
history to be wiorking on EH. Recent years have seen
an explosion of research stemming from the con-
fluence of several areas of mathematics and
physics.

In the past six years the American Institute of
Mathematics (AM) has sponsored three workshops
whose focus has been RH. The first (RHI) was in
Seattle in August 1996 at the University of Wash-
ington. The second (RHI) was in Vienna in Octo-
ber 1998 at the Erwin Schridinger Institute, and the
third (RHII} was in New York in May 2002 at the
Courant Institute of Mathematical Sciences. The
intent of these workshops was to stimulate think-
ing and discussion about one of the most chal-
lenging problems of mathematics and to consider
many different approaches. Are we any closer to
solving the Riemann Hypothesis after these ef-
forts? Possibly. Have we learned anything about the
zeta-function as a result of these workshops? Def-
initely. Several of the participants from the work-

shops are collaborating on the website (http: //]

I Brigen Conrey is director of The American Institue of
Muarhematics. His el address i conreyBaimath.arg.

jovai . a1math .org/ Wl rh/} which provides an
overview of the subject.

Here | hope to outline some of the approaches
to KH and to convey some of the exdiement of
working in this area at the present moment. T
begin, let us examine the Riemann Hypothesis
itself. In 1859 in the seminal paper “Ueber die
Anzahl der Primzahlen unter eine gegebener
Grosse”, G. B F. Riemann outlined the basic ana-
Iytic properties of the zeta-function

. 11 e 1
;[ﬂ.—]+2—j—¥+..._nlml

The =zeries converges in the half-plane where the
real part of £ is larger than 1. Riemann proved
that Cis) has an analytic continuation to the whole
plane apari from a simple pole at 5 = 1. Moreowver,
he proved that £(s) satisfies an amazing funchional
equation, which in its symmetric form is given by

Figure 1. Zi + ir) for 0 < ¢ < 50.
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Figure 2. Contour plot of RZ(s), the curves RZ(s) = 0 (solid) and 9Z(s) = 0 (dotted), contour plot of
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Figure 3. 3-D plot of | RZ(s)|, and the curves RI(s) = 0 (solid) and 3Z(s) = 0 (dotted). This may be the
first place in the critical strip where the curves RZ(s) = 0 loop around each other.

E(s):= {;su — 1 fr (%) Ti(s)=&(1 —x),

where [{s) is the usual Gamma-function.

The zeta-function had been studied previously
by Euler and others, but only as a function of a real
variable. In particular, Euler noticed that

where the infinite product (called the Euler prod-
uct) is over all the prime numbers. The product con-
verges when the real part of s is greater than 1. It
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is an analytic version of the fundamental theorem
of arithmetic, which states that every integer can
be factored into primes in a unique way. Euler used
this product to prove that the sum of the recipro-
cals of the primes diverges. The Euler product sug-
gests Riemann's interest in the zeta-function: he
was trying to prove a conjecture made by Legendre
and, in a more precise form, by Gauss:
"t
2 logt”
Riemann made great progress toward proving
Gauss's conjecture. He realized that the distribu-
tion of the prime numbers depends on the distri-
bution of the complex zeros of the zeta-function.
The Euler product implies that there are no zeros
of Z{s) with real part greater than 1; the functional
equation implies that there are no zeros with real
part less than 0, apart from the trivial zeros at

mix) := #[primes less than x} ~
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5= =2 -4, -6, ... Thus, all of the complex zeros
are in the critical strip 0 < 85 < 1. Riemann gave
an explicit formula for m{x) in terms of the com-
plex zeros p = § + iy of Cis). A simpler variant of
hi= formula is

wind =3 Ain)

o

O
=x_z%-hg2n-§|ngu-x-2:,
Fil

valid for x not a prime power, where the von Man-
goldt function Alr) = log p if m = p* for some k and
MAlm) =0 otherwise. Note that the sum is not ab-
solutely convergent; if it were, then %, Alnk
would have to be a continuous function of x, which
it clearly is not. Consequently, there must be infi-
nitely many zeros g. The sum over @ is with mul-
tiplicity and is to be interpreted as limy_. ..
Mote also that |x*| = x*; thus it was necessary to
show that f <1 in order to conclude that
¥ mux (m) = x, which is a restatement of Gauss's

conjeciure.

[ * L] 1% Al

Figure 4. Explicit formula for y#(x) using the
first 100 pairs of zeros.

The functional equation shows that the complex
zeros are symmetric with respect to the line Bs = —;
Riemann calculated the first few complex zeros
;—+J]1.|31...,§ + 121022 .. and proved that the
number N{T) of zeros with imaginary parts be-
fween 0 and Tis

N(T) = - log —— + L 4+ §{T} = O(1/T)

Iw Ime & "
where S{T) = f'—rargl_f,'ujz +iT) is computed by
continuous variation starting from arg£(2h =10
and proceeding along straight lines, first up to
2 +iT and then to 1/2 + iT. Riemann also proved
that 5(T) = Wlog T). Note for future reference that
at a height T the average gap between zero heights
is = 2w log T. Riemann suggested that the num-
ber My{T) of zeros of ZI1/2+ify with 0 <1 =T
seemed to be about

T T
2w Dgin'e

and then made his conjecture that all of the zeros
of Cis) in fact lie on the 1/2-ling; this is the Rie-
mann Hypothesis.

Riemann's effort came close to proving Gauss's
conjecture. The final step was left to Hadamard and
de la Vallée Poussin, who proved independently in
1896 that £(s) does not vanish when the real part
of 5 is equal to | and from that fact deduced
Gauss's conjecture, now called the Prime Number
Theorem.

Initial Ideas

It iz nost difficult to show that RH is equivalent to
the assertion that for every € = 0,

— £ dt 1{Z4a
mix) = i hgt+ﬂ[x 8

However, it is difficult to see another way to ap-
proach mix) and so get information about the zeros.

Another easy equivalent to BH is the assertion
that Mix) = 2{x"***} for every € = 0, where

Mix)= 3 pinm}
max

and peiry is the Mobius function whose definition
can be inferred from its generating Dirichlet series

14e: ! = prim} .
i
1?[5]___2, e _],I(I_p-}'
Thus, if py,.... pe are distinct primes, then

wipi . ped = (=10 also pin) = 00f p? | 5 for some
prime p. This series converges absolutely when
®s > 1. If the estimate Mix} = (Mx'¥5+) holds for
every € = {0, then it follows by partial summatiomn
that the series converges for every § with real part
greater than 1/2; in particular, there can be no
zeros of C{5) in this open half-plane, because reros
of £{s) are poles of 1) Cig). The converse, that BH
implies this estimate for Mix), is also not difficult
to showw.

Instead of analyzing wix) directly, it might seem
easier o work with Mix) and prove the above es-
timate, perhaps by some kind of combinatorial
reasoning. In fact, Stieltjes let it be known that he
had such a proof. Hadamard, in his famous 1896
proof of the Prime Number Theorem, refers to
Stieltjes"s claim and somewhat apologetcally offers
his much weaker theorem that £(s) does not van-
ish on the 1-line in the hope that the simplicity of
his proof will be useful. Stieltjes never published
his proof.

Mertens made the stronger conjecture that

IMIx)] = ox;
clearly this implies BH. However, Mertens's con-

jecture was disproved by Odlyzko and te Riele in
1985. The estimate Mix) = 0i/X) is also likely to
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Figure 5. Lf|Tix + iy} for 0 < x < 1 and
165024 < p < 16505,

be false, but a proof of its falsity has not yet been
found.

Subsequent Efforts

In England in the early 19005 the difficulty of the
question was not yet appreciated. Barnes assigned
RH o Littlewood as a thesis problem. Littlewood
independently discovered some of the develop-
ments that had already ocourred on the continent.
Hardy, Littlewood, Ingham, and other British math-
ematicians were responsible for many of the resulis
on the zeta-function in the first quarter of the cen-
tury. Hardy and Littlewood gave the first proof
that infinitely many of the zerss are on the 1/2-
line. They found what they called the approximate
fumnctional eqeation for Cis). Later, Siegel uncovered
a very precise version of this formula while study-
ing Riemann's notes in the Gittingen library; the
formula is now called the Riemann-Siegel formula
and gives the starting point for all large-scale cal-
culations of Cis). Hardy and Littlewood gave an
asamptu‘lic evaluation of the second moment of
Ciz +ir)y Ingham proved the asymptotics for the
fourth moment.

Much effort has also been expended on the un-
proved Lindelof hypothesis, which is a consequence
of BH. The Lindelof hypothesis asserts that for
every € =0,

Ci1f2 = ir) = O(t")

Hardy and Littlewood proved that
CiLf2 + if) = Q"+ This bound is now called
the "conwvexity bound”, since it follows from the
functional equation together with general princi-
ples of complex analysis (the maximum modulus
principle in the form of the Phragmén-Lindelof
theorem). Weyl improved the bound to H18+ with
his new ideas for estimating special trigonomeiri-
cal sums, now called Weyl sums.

Hardy grew to love the problem. He and Little-
woond wrote at least ten papers on the zeta-
function. Hardy once included proving RH on &
list of Mew Year's goals he set for himself. Hardy

as [ — s,
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even used RH as a defense: he once sent a postcard
to his colleague Harald Bohr prior to crossing the
English Channel one stormy night, claiming that he
had solved EH. Even though Hardy was an atheist,
he was relatively certain that God, if he did exdist,
wiould not allow the ferry to sink under circum-
stances so favorable to Hardy!

Hilbert seems to have had somewhat conira-
dictory views about the difficultty of BRH. On one
occasion he compared three unsolved problems:
the transcendence of 27, Fermat's Last Theorem,
and the Riemann Hypothesis. In his view, BRH would
likely be solved in a few years, Fermat's Last The-
orem possibly in his lifetime, and the transcendence
question possibly never. Amazingly, the iranscen-
dence question was resolved a few years later by
Gelfond and Schneider, and, of course, Andrew
Wiles recently proved Fermat's Last Theorem. An-
other time Hilbert remarked that if he were to
awake after a sleep of five hundred years, the first
question he would ask was whether BH was solved.

Mear the end of his career, Hans Rademacher,
best known for his exact formula for the number
of partitions of an integer, thought he had dis-
proved RH. Siegel had checked the work, which was
based on the deduction that a certain function
wiould absurdly have an analytic continuation if RH
wiere true. The mathematics community tried to get
Time magazine interested in the story. It fran-
spired that Time became interested and published
an article only after it was discovered that
Rademacher's proof was incorrect.

Evidence for RH

Here are some reasons to believe RH.

= Billions of zeros cannot be wrong. Recent work
by van de Lune has shown that the first 10billion
#eros are on the line. Also, there is a distributed
computing project organized by Sebastian We-
deniwski—a screen-saver type of program——that
many people subscribe to, which claims to have
werified that the first 100'billion zeros are on the
line. Andrew Odlyzko has calculated millions of
ZEros near zeros number 107, 1P and 1072
(available on his website).

Almost all of the zeros are very near the 1/2-
line. In fact, it has been proved that more than
99 percent of zeros p=F+iy satisfy
I — 3l = &/ log|yl.

Many zeros can be proved to be on the line. Sel-
berg got a positive proportion, and . Levinson
showed at least 1/3; that proportion has been
improved to 40 percent. Also, RH implies that
all zerns of all derivatives of Zis) are on the
1/2-line. It has been shown that more than
949 percent of the zeros of the third derivative
£*{5) are on the 1/2-line. Near the end of his
life, Levinson thought he had a method that
allowed for a converse to Rolle's theorem in
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this situation, implying that if £'{s) has at least
a certain proportion of zeros on the line, then
50 does £ and similarly for £ to £ and so on.
However, no one has been able to make this
argument work.

Probabilistic arguments. For almost all random
sequences of —1"s and + 1's, the associated sum-
matory function up to x is bounded by x5+,
The Mobius sequence appears to be fairly ran-
dom.

Symmetry of the primes. RH tells us that the
primes are distributed in as nice a way as pos-
sible. If BRH were false, there would be some
strange irregularities in the distribution of
primes; the first zero off the line would be a very
important mathematical constant. It seems un-
likely that nature is that perverse!

Various Approaches
There is an often-told story that Hilbert and Palya
independently suggested that the way to prove RH
was to interpret the zeros spectrally, that is, to find
a naturally accurring Hermitian operator whose
elgenvalues are the nontrivial zeros of T{1 2 + it).
Then EH would follow, since Hermitian operators
have real eigenvalues. This idea has been one of the
main approaches that has been iried repeatedly.
We describe an assortment of other interesting
approaches fo RH.
Palya's Analysis
Palya investigated a chain of ideas that began with
Riemann: namely, studying the Fourier ransform
of Eit) = Ei!i- + iry, which as a consequence of the
functional equation is real for real t and an even
function of r. KH i= the assertion that all zeros of
£ are real. The Fourier transform can be computed
explicitly:

#ir) 1= r Siule™ du

= 3 2n*rr? expl0t/2) - Intmr expl5t/2)

nm=l
= exp (—mrnte™) .

It can be shown that 4 and 3 are positive for pos-
itive . Ome idea is to systematically study classes
of reasonable functions whose Fourier transforms
hawve all real zeros and then try to prove that Z(t)
is in the clas=s. A sample theorem in this direction
is due 1o de Bruijn:

Let fit) be an even nonconstant entire function
of ¢ such that fAfyz=0 for real ¢ and
f'[r} = mq:{rtilg{ﬂ, where y = O and git) is an en-
tire function of genus = 1 with purely imaginary
zeros only. Then ¥iz) = [T, exp [—fif)je'®dt has
real zeros onhy

MarcH 2003

In particular, all the zeros of the Fourier trans-
form of a first approximation (see Titchmarsh for
details)

$it) ={2rr|:n5h% — 3cosh ’2—'}
= exp{—271 cosh 2t)

to @it} are real. These ideas have been further
explored by de Bruijn, Mewman, [ Hejhal, and
others. Hejhal {19%0) has shown that almost all of
the zeros of the Fourier transform of any partial
sum of $it) are real.

Probahilistic Models

Researchers working in probability are intrigued by
the fact that the I-function arises as an expecta-
tion in a moment of a Brownian bridge:

2E(s) = E(Y")

wiltare 3
Y= '—[:maxb,—m.inb,}
Nom Lelngl | el

with by = B — 18, where §, is standard Brownian
maotion. See a paper of Biane, Pitman, and Yor (Bull
Amer. Math. Soc. (K.5.) 38 (2001), 435-65).
Functional Analysis: The Myman-Bearling
Approach

This approach begins with the following theorem
of Nyman, a student of Beurling.

RH holds if and only if
spangzg a0 < e < 1} = L340, 1)

wihere
Molth = {oefe} — a{l)r]

and {x} = x — x| is the fractional part of x.

This has been extended by Baez-Duarte, whi
showed that one may restrict attention to integral
values of 1 /o, Balazard and Saias have rephrased
thiz in a nice way:

BH holds if and only if

. | 1 2 odr
Ilsl‘ffull—.4[§+!fl1:'[!+!f]| 5+—r2—|:'.

where the infimum iz over all Dirichler
polyaomials A.

Let dy be the infimum over all Dirichlet poly-
nomials

N
Aish= ¥ a,m*
mm]

of length . They conjecture that ady ~ C/f log N,
where C = ¥, 1/|pl*. Burnol has proved that
g

ZE

dp = ——
Iﬂlg..'l 0 o e e
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Figure 6. Duality: The Fourier transform of the error term in the Prime Mumber Theorem (note the spikes at
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where m, is the multiplicity of the zero p. If RH
holds and all the zeros are simple, then clearly
these two bounds are the same.

‘Weil's Explicit Formmula and Positivity Criterion
André Wedl proved the following formula, which is
a generalization of Riemann's formula mentioned
above and which specifically illustrates the de-
pendence between primes and zeros. Suppose b is
an even function that is holomorphic in the strip
|31 =1f2+8 and rthat satisfies hrl=
M1 + [#]1-%-9) for some & = 0, and let

I Tar
qlup = T J: hirie™™ dr.

Then we have the following duality between primes
and zeros of

3 hiy) =2hi) - gl0)log
¥
+ L_I-.IF hl:r]rFi:- + siridr

E

=l

".[n]n

In this formula, a zero is written as p = 12 + iy
where y & C; of course RH is the assertion that
every ¥ is real. Using this duality Weil gave a cri-
terion for RH:

RH holds if and only if
B hiy) =0
¥

for every {admissible) function h of the form
hir) = holrihelF)-

Xian-Jin Li has given a very nice criterion which,
in effect, says that one may resirict attention to a
specific sequence i,

The Riemann Hypothesis is rue if and only if
Mg =0 foreachn =12, ... where

MoOTIES OF THE AMS

A, =01 —(1—1/p)).
Fil

As usual, the sum over Zeros is My X .7
Another expression for A, is

=n_1I 3= ""In;g:E[ﬂ]

It would be interesting to find an interpretation
igeometric?) for these A,, or perhaps those asso-
clated with a different L-function, to make their pos-
itivity transparent.
Selberg's Trace Formmla
Selberg, perhaps looking for a spectral interpreta-
tion of the zeros of Cis), proved a trace formula
for the Laplace operator acting on the space of
real-analytic functions defined on the upper half-
plane H = {x +iy:¥ >0} and invariant under
the group SLi2, Z) of linear fractional transforma-
tions with integer entries and determinant one,
which acts discontinuously on . This invariance
is expressed as

r{ﬂz +b] = flzk

cZ+d

the Laplace operator in this case is

-.|E
- (5 2)
The spectrum of A splits into a continuous part and
a discrete part. The eigenvalues A are all positive
and, by convention, are usually expressed as
A= sl — 5). The continuous part consists of all

5= 1f2 +it, 1 = 0, and we write the discrete part
as 5 = 3 + iry. Then
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Figure 7. The eigenvalues of a random 40 x 40 unitary matrix, 40 consecutive zeros of (5} scaled to wrap once

around the circle, and 40 randomly chosen points on the unit circle.

Some Other Equivalences of Interest

Here are a few other easy-to-state equivalences of

E hir;h = — hidy— gi0hlog + — L J- hirysirdr
=1 RH'

2m |

+2% %5[2 log m)
=]

o gl log Pilog P
*2 2 T _pne
-

where g, h, and A are as in Weil's formula and

Giri:%[i +ir) + T?u +ir) - %rtaﬂh mr

™
cosh mr

+ i3+ # cosh )
The final sum is over the norms P of prime
geadesics of $L(2, 2. The values taken on by P
are of the form in+ vo* —dFf4, n=3, with
certain multiplicities (the class number M — 4)1.
H. Haas was one of the first people to compute
the eigenvalues ry = 9533 ..., = 12173 ...,y =
13.779... of 502, %) in 1977 in his University
of Heidelberg Diplomarbeit. Soon after, Hejhal
was visiting San Diego, and Audrey Terras pointed
ouf to him that Haas"s list contained the numbers
14.134..., 21022 . . the ordinates of the first few
zeros of Cish were lurking amongst the eigenval-
nes! Hejhal discovered the ordinates of the zeros
of Lig, y3) {see section 7) on the list too. He un-
raveled this perplexing mystery about six months
later. It turned out that the spurious eigenvalues
were associated to “pseudo cusp forms”™ and ap-
peared because of the method of computation
used. If the zeros had appeared legitimately, RH
wiould have followed because A = gl — p) is pos-
itive. (The 1979 IHES preprint by P. Cartier and
Hejhal contains additional details of the story.)
The trace formula resembles the explicit for-
mula in certain ways. Many researchers have at-
tempted to interpret Weil’s explicit formula in
terms of Selberg’s trace formula.

MarcH 2003

- ?;-!ard}'andLiIIIE“mdilglﬂt RH holds if and only
if
__x]l

L) i _
ek =00 mxoe

= Redheffer (1977): RH holds if and only if for
every € =0 there ix a Cled >0 such that
| detiAlm))] < Clelm' 2 wiare Ain) iz the n = n
matrix of s and 1's defined by Ali, jh=1 if
d =1 orifi divides j, and Aii, j) = 0 otherwize.
It is known that Ain) has n — [nlog 2] - 1 eigen-
values equal to 1. Also, A has a real eigenvalue
{the spectral radius) which is approsimately /i,
a negative eigenvalue which is approsxdmately
—/f, and the remaining eigenvalues are small.
= Lagarias (2002): Let arim) denote the sum of the
positive divisors of n. RH holds if and only if
ain) = H, + explH,ilog H,
for everyn, where Hy = 1+ 3 + g+ -- -+ £
Other Zeta- and L-Functions
Ower the years striking analogies have been ob-
served between the Riemann zeta-function and
other zeta- or L-functions. While these functions are
seemingly independent of each other, there is grow-
ing evidence that they are all somehow connected
in a way that we do not fully understand. In any
event, trying to understand, or at least classify, all
of the objects which we believe zatisfy RH is a rea-
sonable thing to do. The rest of the article will give
a glimpse in this direction and perhaps a clue to
the future.

First, some examples of other functions that we
believe satisfy RH. The simplest after £ is the
Dirichlet L-function for the nontrivial character of
conductor 3:

1 1
Hsxsb=l-m+g5-5+7w %

MOTIES OF THE AMS

347

Poge|43



This can be written as an Euler product

[T (t=p=rt [] (1+p,

e 3 pul mnd 3

it satisfies the functional equation

Eis, x5h = (%)% DAL x50 = B0 - 5, X5,

and it is expected to have all of its nontrivial zeros
on the 1/2-line. A simdlar construction works for
any primitive Dirichlet character.

Dedekind, Hecke, Artin, and others developed the
theory of zeta-functions associated with number
fields and their characters. These have functional
equations and Euler products, and are expected to
satisfy a Riemann Hypothesis. BEamanujan’s tau-
function defined mplicitly by

x ]___[1] — " = E Timx"
=l =]
also yields an L-function. The assodated Fourier se-
ries Ajz) = ¥ Tinjexpi2mwinz) satisfies

az+k
i(c‘z+d

) = (cz + d)*Alz)

for all integers a, b, ¢, d with ad — ke = 1. A func-
tion satisfying these equations is called a modular
form of weight 12. The associated L-function

= 12
Lalg) == E%

=]
2
(T L
[ ]

-1
p p

satisfies the functional equation
Eat= (2w Tis + L1 F2)sis) = Eall — 5,

and all of its complex zeros are expected to be on
the 1/2-line.

Another example is the L-function associated to
.iulelljl:n:l.::|.-|.1r'|.r|:I:'.';-.r2 = x* + Ax + B, where A and
B are integers. The associated L-function, called the
Hasse-Weil L-function, i=s

o aimpfn'®
Lelsh = E o

nml
12

=J;|‘ {] - _iﬂg:? +%:]_I

xﬂ. [I _ E‘F‘LFJP”E_]_'.

where N is the conductor of the curve. The coeffi-
chents 4, are constructed easily from ap for prime pr;
in murn the a, are given by a, = p — Ny, where N
is the number of solutions of E when considered
modulo p. The work of Wiles and others proved that

MOTICES OF THE AMS

these L-functions are associated to modular formes
of weight 2. This modularity implies the functional
equation

Egis) := (2m [ R*Tis + 1/2)gls) = Egll — 5).

It is believed that all of the complex zeros of Lgis)
are on the 1/2-line. A similar construction ought
to work for other sets of polynomial equations, but
50 far this has not been proved.

What is the most general simation in which we
expect the Riemann Hypothesis to hold? The Lang-
lands program is an attempt to understand all
L-functions and to relate them vo automorphic
formas. At the very least a Dirichlet series that iz a
candidate for RH must have an Euler product and
a functional equation of the right shape. Selberg has
given a set of four precise axioms which are believed
o characterize the L-functons for which RH holds.
Examples have been given that show the necessity
of most of the conditions in his axioms.

L-Functions and Random Matrix Theory
An area of investigation which has stimulated
much recent work is the connection between the
Riemann zeta-function and Random Matrix Theory
[RMT) This work does not seem to be leading in
the direction of a proof of RH, but it is convincing
evidence that the spectral interpretaton of the
zeros sought by Hilbert and Palya is an idea with
merit. Moreover, the connection between zeta
theory and EMT has resulied in a very detailed
model of Cis) and its value distribution.

Pair Correlation Conjecture
In 1972 Hugh Montgomery was investigating the
spacings between zeros of the zeta-function in an
aftempt to solve the class number problem. He
formulated his Pair Correlation Conjecture based
in part on what he could prove assuming RH and
in part on RH plus conjectures for the distribution
of twin primes and other prime pairs. This con-
jecture asserts that

. x
¥ 1~.~:[nr(| -[5‘“""'} }.du_
e it & e
The sum on the left counts the number of pairs
0 = y,¥" = T of ordinates of zeros with normalized
spacing between positive numbers o < £. hMont-
gomery had stopped in Princeton on his way from
St Louis, where he had presented this result at an
AMS symposium, to Cambridge University, where
he was a graduate student. Chowla persuaded him
to show this result to Freeman Dy=son at afternoon
tea at the Institute for Advanced Study. Dyson

immediately identified the integrand | — | 222¢)

mu

as the pair cormelation function for eigenvalues
of large random Hermitian matrices measured
with a Gaussian measure—the Gaussian Unitary
Ensemble that physicisis had long been studying
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in connection with the distribution of energy lev-
els in large systems of particles. With this insight,
Montgomery went on to conjecture that perhaps
all the statistics, not just the pair correlation
statistic, would match up for zeta-zeros and eigen-
wvalues of Hermitian matrices. This conjecture is
called the GUE conjecture. It has the flavor of a
spectral interpretation of the zeros, though it gives
no indication of what the particular operator is.
"s Calculations

In the 19805 Odlyzko began an intensive numeri-
cal study of the statistics of the zeros of Cis).
Based on a new algorithm developed by Odlyzko
and Schimhage that allowed them to compute a
value of T{1/2 + it) in an average time of 1* steps,
he computed millions of zeros at heights around
10*™ and spectacularly confirmed the GUE conjec-
ure.

Nearast neighbor fpacings. M = 10°20

o

o
.
—~

LE] AF ] [E] il 2%

Figure 8a. The nearest neighbor spacing for
GUE {solid) and for 7.8 = 10¥ zeros of Zis) near
the 1(*" zero (scatterploth Graphic by A.
Odlyzko.

Moments of Zeta
Maore recently, RMT has led to a conjecture for mo-
ments of T on the critical line. Let

T = JFI (142 + 0™ di
B =7 A al +1 R

Agymptotic formulas for Iy and I; were found by
Hardy and Littlewood and Ingham by 1926. In 1995
Ghosh and | formulated a conjecture for I3 and set
up a notation to clarify the part missing from our
understanding of I, . After scaling out the arithmetic
parts, we identified a factor g, which we could not
predict. The factor is gy = 1 and gz = 2 for the
second and fourth moments and conjecturally
gz = 42 for the sixth moment. At RHIin Seattle, Sar-
nak proposed to Keating that he find a random ma-

Par cornedatian function, N = 10°20
a | —
| |
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i
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= / I
- 1 i 1 |
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Figure Eb.The pair-correlation function for GUE
(solid) and for & = 10* zeros of (s} near the
10% zero (scatterplot). Graphic by A. Odlyzko.

trix explanation for these numbers. By 1998 Gonek
and | had found a number-theoretic way to con-
Jjecture the answer for the eighth moment, namely
ga = 24024 At RHILin Vienna, Keating announced
that he and Snaith had a conjecture for all of the
moments which agreed with g,. gu, and g;. Eeat-
ing, Snaith, and |—moments before Keating's lec-
ture—checked (amid great excitement!) that the
Keating and Snaith conjecture also produced
g—l = E-‘“}?".

The idea of Keating and Snaith was that if the
elgenvalues of unitary matrices model zeta zeros,
then perhaps the characteristic polynomials of uni-
tary matrices model zeta values. They were ahle to
compute—exactly—the moments of the charac-
teristic polynomials of unitary matrices averaged
with respect to Haar measure by using Selberg’s in-
tegral, which is a formula found in the 1940s by
Selberg that vastly generalizes the integral for the
beta-function. Keating and Snaith proposed that

g
= k2 .
e Jl:luu + K1

Farmer and I {2000} proved that g is always an in-
teger and found that it has an interesting prime fac-
torization.

Families

At RHI in Seattle, Sarnak gave a lecture on families
of L-functions based on work that he and Katz
were doing. They discovered a way to identify a
symmetry type (unitary, orthegonal, or symplectich
with various families of L-functions. Their work was
based on studying families of zeta-functions over
finite fields {for which EH was already proved by
Weil for curves and by Deligne for general varieties).
For these zeta-functions, Katz and Samak proved
that the zeros of the family were distributed exactly
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Figure 9. A comparison of the distribution of the lowest lying zero for two families of L-functions. In
each case one first needs to suitably normalize the zeros. The first figure compares the distribution
of the lowest zero of Lis, x;), Dirichlet L-functions, for several thousand d's of size 10'2, against the
distribution of the zero closest to | for large unitary symplectic matrices. In the second picture we
show the same statistic, but for several thousand even quadratic twists d of size 500,000, of the
Ramanujan T ousp form L-function. This is compared to the distribution of the zero closest to | for
large orthogonal matrices with even characteristic polynomial {in the latter family, one needs to
distinguish between even and odd twistsk Graphics by M. Rubinstein.

as the RMT distributions of the monedramy group
associated with the family.

Katz and Sarnak stress that the proofs of Weil
and Deligne use families of zeta-functions over fi-
nite fields to prove BH for an individual zeta-
function. The modelling of families of L-functions
by ensembles of random matrix theory gives evi-
dence for a spectral interpretation of the zeros,
which may prove important if families are ulti-
mately used to prove RH. At this point, however,
we do not know what plays the role of the mon-
odromy groups in this situnation.

BMT and Families.

Keating and Snaith extended their conjectures to
maments of families of L-functions by computing
maoments of characteristic polynomials of sym-
plectic and orthogonal matrices, each with their own
Haar measure. (It should be mentioned that the or-
thogonal and symplectic circular ensembles wsed
by the physicists do not use Haar measure and so
have different answers. Katz and Sarnak figured out
that Haar measure must be used to model
L-functions.)

Further works by Farmer, Keating, Rubinstein,
Snaith, and this author have led to precize conjec-
tures for all of the main terms in moments for
many families of L-functions. These results are so
precise that they lead to further conjectures about
the distributicn of values of the L-functions. We can
even predict how frequently we find douhle zeros
at the center of the critical sirip of L-functions
within certain families.
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Figure 10. The second zero for Lis, x ;) as com-
pared to the RMT prediction. Graphic by
M. Rubinstein.
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Figure 11. The distribution of values of
ICi1f2 + it)] mear r = 10° compared with the dis-
tribution of values of characteristic polynomials
of 12 = 12 unitary matrices. Graphic by M. Snaith.
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The Conspiracy of L-Functions

There is a growing body of evidence that there is
a conspiracy among L-functions—a conspiracy
which is preventing us from =solving RH!

The first clue that zeta- and L-functions even
know about each other appears perhaps in works
of Deuring and Heilbronn in their study of one of
the most intriguing problems in all of mathemat-
ics: Gauss's class number problem. Gauss asked
whether the number of equivalence classes of bi-
nary quadratic forms of discriminant d = 0 goes
1o e2 a5 goes o —es,

The equivalence class of a quadratic form
Qim, m) = am?® + bmn + crn® of discriminant
d = b* — 4ac consists of all of the quadratic forms
obtained by a linear substitution m — o + fn,
n — ym+ dan, where o, f, y. 4 are integers with
nd — By = 1. The number hid) of these equiva-
lence classes is called the class number and is
known to be finite. Equivalently, hid) is the num-
ber of ideal classes of the imaginary quadratic field
}{+'d ). The history of Gauss's problem is extremely
interesting; it has many twists and fums and is not
yet finished—we seem to be players in the middle
of a mystery novel.

Deuring and Heilbronn were trying to solve
Gauss's problem. The main tool they were using was
the beautiful class number formula of Dirichlet,
My = TATL{L, x 0 (|d] = 4), which gives the
class number in terms of the value of the
L-function at 1, which i at the edge of the critical
strip. 50 the question boils down to giving a lower
bound for Li1, }2); this question, in turn, can be re-
solved by proving that there is no real zero of
Lis, x4} very near to 1.

Hecke had shown that the truth of RH for Lis, X4
implies that hid) — =. Then Deuring proved that
the falsity of RH for £(s) implies that bid) > 1 for
large |d|. Finally, Heilbronn showed that the falsity
of RH for Lis, x) for any x implied that Md) — .
These results together proved Gauss's conjecture
and gave a first indication of & connection between
the zeros of £(s) and those of Lis, x4t

Later Landau showed that a hypothetical zero
of Lis, x4, ) very near to | implies that no other
Liz. x4, d # d,, could have such a zero, further il-
lustrating that zeros of Lis, ¥4} know about each
other. Siegel strengthened this approach to show
that for every € > 0 thereis a cie) » 0 such that no
zero A of Lis, x4) satisfies § = 1 - ole)|d]~. The
problem with the arguments of Landaw and Siegel
is that the constant cle) cannot be effectively com-
puted, and so the bound cannot be used to actu-
ally calculate the list of discriminants 4 with a
given class number, which presumahbly is what
Gauss wanted. The ineffectivity comes about from
the assumption that some L-function actually has
a real zero near 1. Such a hypothetical zero of

MarcH 2003

some L-function, which no one believes exists, is
called a Landau-5iegel zero.

In fact, one can shos that if there is some & such
that Lis, ¥, ) has a zeroat § < 1, then it follows that
Bid) = cld|®** f log |d] for all other d, where ¢ = 0
can be effectively computed. Thus, the closer to 1
the hypothetical zero i, the stronger the result. But
note also that any rero bigger than 1,2 would give
a result. The basic idea behind this approach is that
if there is an L{s, x4} with a zero near 1, then
walp) = —1 for many small primes. In other words,
wa mindes the Mibius functon pin) for small .
This is consistent with the fact that

= m'ﬂ

2
has a zero at 5 = 1 (since Cis) has apoleats = 1).
The Landau-Siegel Zero

Much effort has gone toward trying to eliminate the
Landau-5iegel zero described above and so find an
effective solution to Gauss's problem. However,
the L-function conspiracy blocks every attempt ex-
actly at the point where success appears to be in
sight. We begin to suspect that the battle for RH
will not be won without getting to the bottom of
this conspiracy. Here are some tangible examples
which give a glimpse of this tangled weh.

The Brun-Titchmarsh theorem. Let mwix; g, a)
denote the number of primes less than or equal
to x that lie in the arithmetic progression
a mod g. Sieve methods can show that for any
1 = g < x the inequality

X
34, I
oA < 2 N ogix )

holds, where ¢ is Euler's phi-function. It is
believed that the same theorem should be true
with 2 replaced by any number larger than 1 and
sufficiently large x. Any lowering of the constant 2
would eliminate the Landau-5iegel zero. In
particular, Motohashi [1979] proved that if 1 — &
is @ real zero of Lis, x,), then if for x = g° the
Brun-Titchmarsh theorem is valid in the form
mix: g, al = (2 — eelx f{fdg)logix gk, where o =0
is an absolute constant, then § =c'Eflogqg.
where ¢ and ¢ are certain numerical constants.

The Alternative Hypothesis. This is an alternative
to the GUE model for the distribution of zeros. It
proposes the exdstence of a function f(T) that goes
tol as T — e such that if any two consecutive or-
dinates y and y* of zeros of T larger than some Ty
are given, themn the mnormalized gap
2miylog y — y* log ') between y and y* is within
FiTy) of half of an integer. This nypothesis is clearly
absurd! However, ruling this out would eliminate
the Landau-Siegel zero (Conrey-lwaniec {2002]),
and so for all we know it could be true.
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If ome could prove, for example, that there is a
4 > 0 such that for all sufficiently large T there is
a pair of consecutive zeros with ordinates between
T and 2T whose distance apart is less than 12 — &
times the average spacing. then the alternative hy-
pothesis would be violated. Random matrix theory
predicis the exact distribution of these neighbor
spacings and shows that we should expect that
about 11 percent of the time the neighbor gaps
are smaller than 1/2 of the average. These ideas
were what led Montgomery to consider the pair-
correlation of the zeros of Cis) mentioned above.
He showed that there are arbitrarily large pairs
of zeros that are as close together as (UG8 of the av-
erage spacing. Later works have gotten this bound
down to 0.5152. There are indications that wsing
work of Budnick and Sarmak on higher correlations
of the zeros of £, one might be able to reach (L5,
but 0.5 is definitely a limit (more like a brick wall!)
of all of the known methods.

Vanizhing of modular [-functions. The most spec-
tacular example is the work of lwaniec and Sarnak.
They showed that if one could prove that there is
a d = 0 such that more than 1/2 + & of the modu-
lar L-functions of a fixed weight, large level, and
even functional equation do not vanish, then the
Landau-Siegel zero could be eliminated. It is pre-
dicted that all but an infinitesimal proportion of
these values are nonzern; they just needed one-half
plus § of them to be nonzers. They can prove that
50 percent do not vanish, but despite their best ef-
forts they cannot get that extra little tiny bit needed
to eliminate the Landaw-5iegel zero.

A Clue and a Partial Victory

The only approach that has made an impact on the
Landau-Siege]l zero problem is an idea of Goldfeld.
In 1974 Goldfeld, anticipated somewhat by Fried-
lander, realized that while a zero at 1 /2 would barely
fail to produece a lower bound for the class number
tending to infinity, a multiple zero at 12 would pro-
duce a lower bound which, while not a positive
power of |d|, stll goes to s Moreowver, it was be-
lieved—by virtue of the Birch and Swinnerton-Dyer
conjecture—that zeros of high multiplicity do exdst
and the place to look for them is among L-functions
associated o elliptic curves with large rank. How-
ever, it was not until 1985 that Gross and Zagier
demonstrated conclusively that there exist L-func-
tions with triple zeros at 12, This led to the lower
bound that for any € = 0 there is an effectively
computable clel>0 such that Md>
cylenlog |d))' . This is a long way from the ex-
pected Mid) > c/Td[/ logldl, but it did solve
Gauss's problem. The clue that it gave us was to
study exotic L-functions, or extremal L-functions,
which have zeros of high multiplicity at the cen-
ter. At present, our best hope for finding these
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L-functions is to leok at elliptic curves with many
rational points.

hwaniec's Approach

hwaniec, in his lecture at KHII, proposed a way to
take advantage of the above ideas. In a nutshell, his
idea is to take a family of L-functions having a
multiple zero at 1 /2 and use this family to obtain
useful approximations for the Mébius function
wim) as a linear combination of the coefficients of
the L-functions from the family. In this way, the
Mébius function is tamed. One example of a fam-
ily considered by lwaniec is the family of
L-functions associated to the elliptic curves

Egr,z:}ra=xi+.4x+ﬂ‘!,

which have a rational point (B, 0) and so have rank
at least one. Considering A and B in certain
arithmetic progressions shows that the associated
L-function must have a double zero at the center.
Iwaniec presented three conjectures which
together would eliminate the Landau-Siege]l zero.
The main two theorems needed to complete his
program are a bound for the second moment

T Lyg(lf2F = 0(X""2{log X))
Ami L Ee 1M

of this farmily together with a good estimate {square-
root cancellation uniform in M, ¥, and g} for the
incomplete exponential sum
kP
E x,[mn}&xp(lmm 1 )
Y q

the kind of estimate that for a completed expo-
nential sum follows from the BH for varieties
proved by Deligne. Iwaniec has similar, but more
complicated, constructions that would lead to a
quasi-Riemann hypothesis, producing a concrete
£ < 1 such that there are no zeros to the right of
the line through f.

Iwaniec's approach will likely reduce the gques-
ton of KH, which is ostensibly about zeros or
poles, into several subsidiary questions that have
a much different flavor, such as finding upper
bound estimates for moments and values of
L-functions. This approach offers hope of attack by
methods from analytic number theory.

Conclusion

A major difficulty in trying to construct a proof of
RH through analysis is that the zeros of L-functions
behave =0 much differently from zeros of mamy of
the special functions we are used to seeing in math-
ematics and mathematical physics. For example, it
is known that the zeta-function does not satisfy any
differential equation. The functions which do arise
as solutions of some of the classical differential
equations, such as Bessel functions, hypergeometric
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functions, etc., have zeros which are fairly regularly
spaced. A similar remark holds for the zeros of so-
lutions of classical differential equations regarded
as a function of a parameter in the differential
equation. For instance, im the Pdalya
theorem above comparing ¢ t) with #(t), the zeros
are actually zeros of a Bessel function of fixed
argument regarded as a function of the index.
Again the zeros are regularly spaced.

{On the other hand, the zeros of L-functions are
much more irregularly spaced. For example, the
RMT models predict that for any € == 0 there are in-
finitely many pairs of zeros g and p° such that
¢ = o'l < |p1="** Generally it is believed that all
zeros of all L-functions are linearly independent (in
particular, simple), except that certain L-functions
can have a zero at 5 = 1/2 of high multiplicity.
The conjecture of Birch and Swinnerton-Dyer
asserts that the multiplicity of the zero of the
L-function associated with a given elliptic curve is
equal to the rank of the group of rational points
on the elliptic curve. It is known that the latter can
be as large as 26, and it is generally believed to get
arbitrarily large. Mone of the methods from analy-
sis seem capable of dealing with such exotic phe-
MOMENE.

It is my belief that KH is a genuinely arithmetic
question that likely will not succumb to methods
of analysiz. There is a growing body of evidence in-
dicating that one needs to consider families of
L-functions in order to make progress on this
difficult guestion. If so, then number theorists
are on the right track to an eventual proof of RH,
but we are still lacking many of the tools. The in-
gredients for a proof of RH may well be moment
theorems for a new family of L-functions not yet
explored; modularity of Hasse-Weil L-functions
for many varieties, like that proved by Wiles and
others for elliptic curves; and new estimates for
excponential sums, which could come out of arith-
metic geometry. The study of L-functions is stll in
its beginning stages. We only recently learned the
modularity of the L-functions associated to ellip-
tic curves; it would be very helpful to understand
the L-functions for more complicated curves and
generally for varieties. It would be useful to
systernatically compute many new examples of
L-functions to get a glimpse of what is out there
waiting to be discovered. The exotic behavior of
the multiple zeros of L-functions associated to
elliptic curves with many rational points could be
just the beginning of the story.
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