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Course Rationale 

 

There is a big difference between memorising and understanding mathematical 
formulae. Knowing deeply maths facts frees up the mind to solve real math 
problems. Example:  what is the sum of the first 100 numbers?  
There is a well-known story about the mathematician Karl Friedrich Gauss when 
he was in elementary school.  His teacher got mad at the pupils and told them 
to add all the numbers from 1 to 100 and give him the answer by the end of the 
class. About 30 seconds later Gauss gave him the answer!   
In this course we will learn efficient ways to calculate sums of this kind and we 
will see how important they are for finding the area of two-dimensional regions 
which are not polygons (regions bounded by parts of a straight line). In 
particular, we will learn how to calculate the area under a curve as a limit of 
sums of simpler areas. Moreover, we will look at the strange behaviour of 
infinite sums (series) of numbers. 
 
The course is a mixture of algebra and analysis and gives a taste of the content 
covered in the first courses of Analysis at university level.  
As soon as we become confident with the notation relative to the theory of 
sequences of numbers and their series, we will develop the ability to 
connect different parts of mathematics to solve apparently simple 
problems. More precisely, we will extend the ability to reason deductively in 
algebra using geometrical constructions. Students will be exposed to critical 
thinking and technical know-how strategies which they will be expected to 
master at university, and are transferable to everyday life. 
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Mark Scheme 

 

Key Skill 1st 2.2 3rd 

Numerical 
Analysis 

 Simple and complex 
calculations are correct 
and always very well 
presented 

 Geometrical 
interpretation is relevant 
and inform the work 

 Simple calculations are 
well attempted and 
often correct 

 Formulae from the 
course material are 
quoted and often 
correctly used 
 

 Simple calculations are 
attempted 

 Formulae from the 
course material are 
quoted but not always 
correctly used 

 Geometrical 
interpretation is lacking 
or largely misguided 

Communication 

 Language is concise, 
clear and in 
mathematical style 

 Appropriate technical 
vocabulary is confident 
and correct 

 Language is clear and 
reasonably detailed 

 Appropriate technical 
vocabulary is not always 
confident and correct  

 Attempts are made to 
use technical vocabulary, 
but very often incorrect 
or inappropriate 

Critical thinking 
and 

contextualisation 

 The course materials and 
explanations are 
coherently applied to  
new specific situations 

 Reflective appreciation 
of the purpose and scope 
of the course is shown 

 Some attempts are made 
to apply course concepts 
in explaining new 
problems 

 Course concepts are 
applied to familiar 
problems 

 Course concepts are 
quoted but not 
successfully applied to 
new problems 

 Some attempts are made 
to apply course contents 

 

 

 

 

 

 

 

 
 
 



Page | 6  
 

 

Glossary of Keywords 

 
 
C 
Continuous function.________________________________________________________ 
Convergence. The property of approaching a limit, such as a point, line, function or value. 
 

D 
Divergence. The property of not converging 

 
I 
Interval [a,b]={_________________________________________________}. 
 

N 
Natural number. The whole numbers from 1 upwards: 1, 2, 3, and so on... 
Notation. A system of graphic symbols for a specialised use, other than ordinary writing. 

R 
Real numbers.________________________________________________________ 
Real-valued function.__________________________________________________ 
 

S 
Squares number. An integer that is the square of an integer;  For example, 9 is a square number, since it can be written as 3 × 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Square_(algebra)
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Tutorial 1 – Sums of finite sequences 

 

What is the Purpose of Tutorial 1? 

This tutorial will help us to understand the power of formalising real problems and generalise solutions. In particular, we aim to 
answer the following question. What is the sum of the first 100 natural numbers? 
 
The targets in this tutorial are: 

 To introduce the definition of ‘finite and infinite sequence’ 

 To show the difference between finite and  infinite sequences 

 To learn the notation and the rules of a finite sequence 

 To recognise particular finite sequences from their rules 

 To introduce the definition of sum 

 To work out efficiently the sum of the terms of a given finite sequence. 

What is a sequence? 

A sequence is a list of things (usually numbers) that are in order. 

 

When the sequence goes on forever it is called an infinite sequence, 

otherwise it is a finite sequence. 

Examples: (Complete where necessary) 

{1, 2, 3, 4, ...} is the sequence of natural numbers (and it is an infinite sequence) 

{20, 25, 30, 35, ...} is also an infinite sequence 

{1, 3, 5, 7} is the sequence of the first 4 odd numbers (and is a ______ sequence) 

{4, 3, 2, 1} is 4 to 1 backwards (______ sequence) 

{1, 2, 4, 8, 16, 32, ...} is an ________ sequence where every term doubles  

{a, b, c, d, e} is the (______) sequence of the first 5 letters in the alphabet 
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{0, 1, 0, 1, 0, 1, ...} is the sequence of alternating 0s and 1s (note that they are in 

order; it is an alternating order in this case) 

{−1

2
  ,1

4
,− 

1

8
,

1

16
,….} is the (_______) sequence of the integer positive powers of −

1

2
 

When we say the terms are "in order", we are free to define what order that is! They 

could go forwards, backwards or they could alternate, or any type of order we want! A 

sequence is like a set, except that:  

 the terms are in order (with sets the order does not matter) 

 the same value can appear many times (only once in sets) 

Example: {0, 1, 0, 1, 0, 1, ...} is the sequence of alternating 0s and 1s. The set is 

just {0,1}. 

Notation 

Sequences also use the same notation as sets:  

list each element, separated by a comma,  

and then put curly brackets around the whole thing. 

{3, 5, 7, ...} 

The curly brackets { } are sometimes called "set brackets" or "braces". 

The rule of a sequence 

A sequence usually has a rule, which is a way to find the value of each term. 

Example: the sequence {3, 5, 7, 9, ...} starts at 3 and jumps 2 every time: 

 

Saying "starts at 3 and jumps 2 every time" is fine, but it doesn't help us calculate the 

10th term, the 100th term, or the nth term, where n could be any term number we want. 

We want a formula with "n" in it (where n is any term number). 

So, what can a rule for {3, 5, 7, 9, ...} be? 
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Firstly, we can see the sequence goes up 2 every time, so we can guess that a Rule is 

something like "2 times n" (where "n" is the term number). Let's test it out: 

Test rule: 2n 

n Term Test Rule 

1 3 2n = 2×1 = 2 

2 5 2n = 2×2 = 4 

3 7 2n = 2×3 = 6 

That nearly worked, so let us try changing it to: 

Test rule: 2n+1 

n Term Test Rule 

1 3 2n+1 = 2×1 + 1 = 3 

2 5 2n+1 = 2×2 + 1 = 5 

3 7 2n+1 = 2×3 + 1 = 7 

That works! So instead of saying "starts at 3 and jumps 2 every time" we write this: 

2n+1 

Now we can calculate, for example, the 100th term: 

2 × 100 + 1 = 201 

Notation 

To make it easier to use rules, we often use this special way of writing: 

 

 xn is the nth term 

 n is the term 

number 

 

Example: to mention the "5th term" we write "x5" 

So a rule for {3, 5, 7, 9, ...} can be written like: xn = 2n+1. 
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To calculate the 10th term we can write: 

x10 = 2×10+1 = 21 

Can you calculate x50 (the 50th term) doing this? x50=____________________. 

Here is another example: 

Example: Calculate the first 4 terms of this sequence 

{an} = { (-1/n)n } 

 a1 = (-1/1)1 = -1 

 a2 = (-1/2)2 = 1/4 

 a3 = (-1/3)3 = -1/27 

 a4 = (-1/4)4 = 1/256 

and so {an} = { -1, 1/4, -1/27, 1/256, ... }. 

 

Activity 1. Calculate the first 5 terms of the following sequences: 

{n} = { _, _, _, _, _, … } and {1} = { _, _, _, _, _, … } 

{(−
1

2
)

𝑛

} = {−
1

2
,                                                      , … } 

{
𝑛 − 1

𝑛
} = {0,                                          , … } 

{(−1)𝑛−1} = {1,                                    , … } 

{(
𝑛2

2𝑛
)} = {

1

2
,                                          , … } 

{(1 +
1

𝑛
)

𝑛

} = {2, (
3

2
)

2

,                                          , … } 

{(
cos (𝑛π/2)

𝑛
)} = {0, −

1

2
,                                      , … } 
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Let's look now at some special sequences, and their rules. 

Natural Numbers 

1, 2, 3, 4, 5, 6, 7, 8, 9, ... 

The whole numbers from 1 upwards. Rule:  xn = n 

 

Triangular Numbers 

1, 3, 6, 10, 15, 21, 28, 36, 45, ... 

The Triangular Number Sequence is generated from a pattern of dots which form a 

triangle. By adding another row of dots and counting all the dots we can find the next 

number of the sequence: 

 

But it is easier to use the Rule: xn = n(n+1)/2 

Example: 

 the 5th Triangular Number is x5 = 5(5+1)/2 = 15, 

 and the 6th is x6 = 6(6+1)/2 = 21 

Square Numbers 

1, 4, 9, 16, 25, 36, 49, 64, 81, ... 

The next number is made by squaring where it is in the pattern. Rule:  xn = n2 
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Cube Numbers 

1, 8, 27, 64, 125, 216, 343, 512, 729, ... 

The next number is made by cubing where it is in the pattern.    Rule: xn = n3 

 

 

Series and Partial Sums 

In this paragraph we are going to learn to sum up the terms of some special sequences.  

 

 
Given a finite sequence  {𝑎𝑛}𝑛=1

𝑘  we define  

∑ 𝑎𝑛 ≔ 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘

𝑘

𝑛=1

 

the partial (finite) sum of the terms of the sequence. 

 
 

 
 

 
Given an infinite sequence  {𝑎𝑛}𝑛=1

∞  we define  

∑ 𝑎𝑛 ≔ 𝑎1 + 𝑎2 + 𝑎3 + ⋯

∞

𝑛=1

 

the series of the terms of the sequence. 
 

 
 

 
 

 

Language Note: Partial Sums are sometimes called "Finite Series" 

(a "Series" is the sum of an infinite sequence). 
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Let’s us focus only on the finite sequences for now. 

 
Partial Sums are often written using the symbol Σ (called Sigma) to mean "add them all 

up". 

Sum What? 

Sum whatever appears after the Sigma:   
 

(so we sum n) 

But What is the Value of n ? 

The values are shown below 

and above the Sigma: 
  

 

(it says n goes from 1 to 4, 

which is 1, 2, 3 and 4) 

Then? 

We add up 1,2,3 and 4:   

 

To recap: 

 

 

More… 

Square n each time and sum the result: 
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Sum up the first four terms in the sequence 2n+1": 

 

We don't have to use n every time. In the following example we use “i” and sum up i × 

(i+1), going from 1 to 3: 

 

And we can start and end with any number. Here we go from 3 to 5: 

 

Some particular sums 

 

Questions: what is the sum of the first 100 whole numbers??  

∑ 𝑛 =?

𝑘

𝑛=1

 

 
How would you work this out efficiently?  

 
There is a well-known story about Karl Friedrich Gauss when he was in elementary 

school.  His teacher got mad at the class and told them to add the numbers from 1 to 
100. The question was assigned as “busy work” by the teacher, but Gauss found the 

answer rather quickly by discovering a pattern.  His observation was as follows: 

1 + 2 + 3 + 4 + … + 98 + 99 + 100 

Gauss noticed that if he was to split the numbers into two groups (1 to 50 and 51 to 
100), he could add them together vertically to get a sum of 101. 

 

1     + 2   + 3   + 4   + 5   + … + 48 + 49 + 50 

                              100 + 99 + 98  + 97 + 96 + … + 53 + 52  + 51 
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1 + 100 = 101 
2 + 99 = 101 

3 + 98 = 101 
. 

. 

. 

48 + 53 = 101 
49 + 52 = 101 

50 + 51 = 101 

Gauss realised that his final total would be 50 x 101 = 5050. 

 

 

Question. Can you recognise the formula behind this calculation? In other words, how 

can 5050 be written in terms of 100?  

 

 

 

Question. What do you do if there is an odd number of terms to add so that you can't 

split them into two groups? For example: "how do you work out the sum of the first 21 
whole numbers?"  
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Tutorial 1 – Baseline Test 

The homework assignment for the first tutorial is a baseline test to see your initial level of attainment in this subject area. 
The assignment will test for some or all of the subject specific skills that are required later in the final assignment. 
However, it is shorter than the final assignment and is an introduction to the subject as well as a challenge! 
 
Do not worry too much about doing ‘well’ or ‘badly’ on the baseline test, it takes into account the fact that you may not 
be familiar with the subject area. It is designed to help you and your PhD tutor identify where you are at the start of the 
programme and to help you measure your progress along the way. 

 
EXE_1.1  Give the definition of the commutative and associative property of the addition. 

 
EXE_1.2  Find the solution(s) of the following equations and do the check. 

 
− 2 − 13.8n  =  −8n − (6n + 1);  B2=49;  Y3=27;  (2x+3)2-2x(x+3)=5x-2(1-x)x; 
 

1

𝑥2−9
+

2

𝑥−3
=

3

𝑥+3
 ;  2x2 + 5x + 2 = 0 ; x2 − 6𝑥 + 5 = 0 ; 

 

 
 
 
 
 
EXE_1.3  Multiply the polynomials (−𝑡3 + 3𝑡) and (−3𝑡2 + 2𝑡).  

                      Factorize 7𝑝3𝑟 − 5𝑡3𝑠 − 21𝑝2𝑟 − 10 𝑠3𝑡3  . 

 

 

EXE_1.4  

What is the twenty-second term of the sequence given by xn = 5n - 3?  

If n is a natural number, what is the tenth term of the sequence given by xn = 0.4×(0.5)n ? 

What is the seventh term of the sequence {an} = {(1/n)n-1 } ? 

The nth hexagonal number is given by hn = n(2n - 1). What is the fifth hexagonal number? 

The nth term of a sequence is given by xn = 3n2 – 1. Which term of the sequence is equal to 866? 

The nth term of a sequence is given by 𝑥𝑛 =
𝑛2−1

7𝑛−25
. Which term of the sequence is equal to 2? 
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Tutorial 2 – Particular finite sums and their properties 

 

What is the Purpose of Tutorial 2? 

The purpose of Tutorial 2 is to learn how to sum up efficiently the terms of a finite sequences of numbers. In particular, we will 
try to answer the following questions.  

 What is the sum of the first n natural numbers? (Gauss’ formula) 

 What is the sum of the first n squares numbers? And cubes? 

 What properties does a partial sum have? 

 

Some particular sums 

 

  Easy! Summing 1, n-times, equals n. 

 

  Easy! Summing the constant c, n-times, equals c times n 

 

  (2.1) 

 

  (2.2) 

 

  (2.3) 

Let's prove (2.1). 

∑ 𝑘𝑛
𝑘=1    =    1     +    2     +     3    +  … +  (n-1) +    n 

∑ 𝑘𝑛
𝑘=1    =    n     +  (n-1) +  (n-2)  +  … +    2    +    1 

2∑ 𝑘𝑛
𝑘=1  = (n+1) + (n+1) +  (n+1) +  … + (n+1) + (n+1) = n (n+1) 

 

Then I get that 2∑ 𝑘𝑛
𝑘=1 = n(n+1) and so ∑ 𝑘 =

𝑛(𝑛+1)

2

𝑛
𝑘=1 . 

 
To prove (2.2)  let us write n-copies of the identity 

(𝑖 + 1)3 − 𝑖3 = 3𝑖2 + 3𝑖 + 1, 
one for every value of “i” from 1 to n, and let sum them up together.  

23 − 13 = 3 ∙ 12 + 3 ∙ 1 + 1 
33 − 23 = 3 ∙ 22 + 3 ∙ 2 + 1 
43 − 33 = 3 ∙ 32 + 3 ∙ 3 + 1 

                             ⋮      ⋮        ⋮         ⋮      ⋮ 
             𝑛3 − (𝑛 − 1)3 = 3 ∙ (𝑛 − 1)2 + 3 ∙ (𝑛 − 1) + 1 

(𝑛 + 1)3 − 𝑛3    = 3 ∙ 𝑛2 + 3 ∙ 𝑛 + 1 

               (𝑛 + 1)3 − 1       = 3 ∙ (∑ 𝑘2

𝑛

𝑘=1

) + 3 ∙ (∑ 𝑘

𝑛

𝑘=1

) + 𝑛 

                                =3 ∙ (∑ 𝑘2𝑛
𝑘=1 ) + 3

𝑛(𝑛+1)

2
+ 𝑛 
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The equation can be solved with respect to ∑ 𝑘2𝑛
𝑘=1  (note that, in the last row, we have 

used (2.1)). 
 

Moreover, note the cancellation which occurred when we summed the left members of 
the n identities. The term 23 in the first row has cancelled the term −23 in the second row, 

and so on, leaving only two terms (𝑛 + 1)3 on the nth row and −13 from the first row. 

∑((𝑖 + 1)3 − 𝑖3) = (𝑛 + 1)3 − 13.

𝑛

𝑖=1

 

The latter is a telescopic sum. 

 
 

Activity 2: We have the pyramid, as shown in the picture below, made of blocks. 

There are 14 layers of blocks. How many blocks are in there? 

 

  

 

 

 

 

 

 

 

 

Question. What would do you do to prove (2.3)? 
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Properties 

Partial Sums have some useful properties that can help us do the calculations. 

Let  {𝑎𝑘}𝑘=m
𝑛   be a (finite) sequence of (real) numbers. 

Multiplying by a Constant 

Let c be a constant.  

Then,  

 

In other words: if every term we are summing is multiplied by a constant, we can "pull" 

the constant outside the sigma. 

Example: 

 

In  words, instead of summing 6k2 we can sum k2 and then multiply the whole result 

by 6. 

 Adding or Subtracting  

Let  {𝑏𝑘}𝑘=m
𝑛    be a (finite) sequence of (real) numbers. 

 

In words, when two terms are added together, and we want to sum them up, we can 

actually sum them separately and then add the results. 

Example: 

 

It is going to be easier to do the two sums and then add them at the end. 
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Note that this property also works for subtraction: 

 

Activity 3: Work out the following sum 

∑(𝟔𝐤𝟐 − 𝟒𝐤 + 𝟑)

𝐧

𝐤=𝟏

 

 

 

 

Then, calculate  

∑(𝟔𝐤𝟐 − 𝟒𝐤 + 𝟑)

𝟏𝟒

𝐤=𝟏

 

 

 
 

 

Tutorial 2 – homework 

EXE_2.1: What is the sum of the whole numbers from 10 to 100 inclusive? 

 

 

EXE_2.2: The diagram below shows a pattern of rectangles each made up of squares: 

 
Write down a formula for the total number of squares in the first N rectangles (including white and blue squares).  
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What if N=70? 
 
 
 
 
 

EXE_2.3: The diagram below shows a pattern of shapes consisting of large squares with four smaller squares cut out from the 

four corners: 

 
Write down a formula for the total number of small squares in the first N of these shapes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXE_3.3 Work out the following telescopic sum. 

 
Hint: 
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Tutorial 3 – Infinite sequences and their series 

 

What is the Purpose of Tutorial 3? 

In Tutorial 3 we will learn that, when dealing with infinite sums of numbers, things can get really strange and,  sometimes, they 
can even go against what our mind would initially suggest. In particular, we try to answer the following questions. 

 Can I calculate the sum of an infinite sequence of numbers? 

 Which are the conditions for this to happen? 
 

Let's say we have an infinite sequence of values 

1 
 ,   

1 
 ,   

1 
 ,   

1 
 , ... 

2 4 8 16 

which follow a rule (in this case each term is half the previous one). 

And we add them all up: 

1 
  +   

1 
  +   

1 
  +   

1 
  +  ...  =  S 

2 4 8 16 

We get an infinite series. 

"Series" sounds like it is the list of numbers, but it is actually when we add them up. 

(Note: The dots "..." mean "continuing on indefinitely") 

You might think it is impossible to work out the value of S, but in this case we have that 

1 
  +   

1 
  +   

1 
  +   

1 
  + ... = 1 

2 4 8 16 

And here is why: 

 

 

Later we also show a proof using Algebra. 
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Notation 

We use Sigma Notation for infinite series with the symbol of infinity ∞ . Our example 

from above looks like: 

 

 Another Example 

1 
  +   

1 
  +   

1 
  +   

1 
  + ... =   

1 

4 16 64 256 3 

Each term is a quarter of the previous one, and the sum equals 1/3: 

 

Of the 3 spaces (1,2,3) only 1 gets filled up, hence 1/3. 

  

 

Converge 

Let's add the terms one at a time. When the "sum so far" approaches a finite value, the 

series is said to be "convergent": 

Our first example: 

1 
  +   

1 
  +   

1 
  +   

1 
  + ... 

2 4 8 16 

Would add up like this: 
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Term   Sum so far 

1/2   0,5 

1/4   0,75 

1/8   0,875 

1/16   0,9375 

1/32   0,96875 

...   ... 

The sums are heading towards 1, so this series is convergent. 

In Calculus we would say "the sequence of partial sums has a finite limit." 

Diverge 

If the sums do not converge, the series is said to diverge. 

Example: 

1 + 2 + 3 + 4 + ... 

Adds up like this: 

Term   Sum so far 

1   1 

2   3 

3   6 

4   10 

5   15 

...   ... 

The sums are just getting larger and larger, not heading to any finite value. 

It does not converge, so the series is divergent. 

 

Example:  

1 − 1 + 1 − 1 + 1 ... 

It goes up and down without settling towards some value, so it diverges. 
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More Examples 

Geometric Series 

A series it is called a geometric series when the ratio between each term and the next 

is a constant. 

Our first example is a geometric series: 

 

The ratio between each term is ½. We can show why that series equals 1 using algebra. 

First, we will call the whole sum "S":     S = 1/2 + 1/4 + 1/8 + 1/16 + ... 

      

Multiply S by ½:   S/2 = 1/4 + 1/8 + 1/16 + 1/32 + ... 

      

Now subtract the members!   S - S/2 = 1/2 

   

Simplify:   S/2 = 1/2 

Hence:   S = 1 

Harmonic Series 

This is the Harmonic Series: 

 

It is divergent. How do we know? Let's compare it to another series: 

1 + 
   1   

  +   
1 

+ 
1 

  +   
1 

+ 
1 

+ 
1 

+ 
1 

  +   
1 

  + ... 
  2    3 4 5 6 7 8 9 

 

  
 

  
 

  
 

  etc... 

1 + 
  1   

  +   
1 

+ 
1 

  +   
1 

+ 
1 

+ 
1 

+ 
1 

  +   
1 

  + ... 
  2   4 4 8 8 8 8 16 

In each case, the top values are equal or greater than the bottom ones. 
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Now, let's add up the bottom groups: 

1 + 
  1   

  +   
1 

+ 
1 

  +   
1 

+ 
1 

+ 
1 

+ 
1 

  +   
1 

...   + ... 
  2   4 4 8 8 8 8 16 

 

  
 

  
 

  
 

  
 

  

1 + 
  1   

  +   
  1   

  +   
      1       

  +   
  1 

  + ... = ∞ 
  2     2         2         2 

So our original series ∑
1

𝑛

𝑘
𝑛=1  must also be infinite. 

 

 Geometric Sequences 

In a Geometric Sequence each term is found by multiplying the previous term by 

a constant. 

Example: 

2, 4, 8, 16, 32, 64, 128, 256, ... 

This sequence has a factor of 2 between each number. Each term (except the first term) 

is found by multiplying the previous term by 2. 

 In general, we write a Geometric Sequence like this: 

{a, ar, ar2, ar3, ... } 

where: 

 a is the first term, and 

 r is the factor between the terms (called the "common ratio")  

Example: {1,2,4,8,...} 

The sequence starts at 1 and doubles each time, so 

 a=1 (the first term) 

 r=2 (the "common ratio" between terms is a doubling) 

And we get: {a, ar, ar2, ar3, ... }= {1, 1×2, 1×22, 1×23, ... }= {1, 2, 4, 8, ... } 



Page | 27  
 

Note that, r must not be 0. In fact, when r=0, we get the sequence {a,0,0,...} which is 

not geometric. 

The Rule 

We can also calculate any term using the Rule: 

xn = ar(n-1) 

(we use "n-1" because ar0 is for the first term). 

  

Example: 

10, 30, 90, 270, 810, 2430, ... 

This sequence has a factor of 3 between each number. The values of a and r are: 

 a = 10 (the first term) 

 r = 3 (the "common ratio") 

The Rule for any term is: 

xn = 10 × 3(n-1) 

So, the 4th term is: x4 = 10×3(4-1) = 10×33 = 10×27 = 270 

And the 10th term is: x10 = ___________________________________ 

  

A Geometric Sequence can also have smaller and smaller values: 

Example: 

4, 2, 1, 0,5, 0,25, ... 

This sequence has a factor of 0,5 (a half) between each number. Its Rule is  

xn = 4 × (0,5)n-1 



Page | 28  
 

Why "Geometric" Sequence? 

Because it is like increasing the dimensions in geometry: 

 

a line is 1-dimensional and has a length of r 

in 2 dimensions a square has an area of r2 

in 3 dimensions a cube has volume r3 

etc (yes we can have 4 and more dimensions in mathematics). 

Summing a Geometric Series 

When we need to sum a Geometric Sequence 

a + ar + ar2 + ... + ar(n-1) 

(each term is ark, where k starts at 0 and goes up to n-1), there is a handy formula. 

 

 

a is the first term, r is the "common ratio" between terms, n is the number of terms. 

The formula is easy to use. Just "plug in" the values of a, r and n. 

Example: Sum the first 4 terms of 

10, 30, 90, 270, 810, 2430, ... 

This sequence has a factor of 3 between each number. The values of a, r and n are: 

 a = 10 (the first term) 

 r = 3 (the "common ratio") 

 n = 4 (we want to sum the first 4 terms) 
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becomes 

 

You can check it yourself: 

10 + 30 + 90 + 270 = 400 

And another example, this time with r less than 1: 

Activity 4: Add up the first 10 terms of the Geometric Sequence that halves each time: 

{ 1/2, 1/4, 1/8, 1/16, ... } 

The values of a, r and n are: 

 a =  

 r =  

 n =  

So: 

 

becomes 

 

Question: if we continue to increase n, what happens? 

 

Let's see why the formula works, because we get to use an interesting "trick" which is 

worth knowing. 

First, call the whole sum "S":   S =   a + ar + ar2 + ... + ar(n-2)+ ar(n-1) 
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Multiply S by r:   S·r =   ar + ar2 + ar3 + ... + ar(n-1) + arn 

Now subtract members, 

 

Then, we get a simple result: 

S − S·r = a − arn 

Let's rearrange it to find S. 

Factor out S and a:   S(1−r) = a(1−rn) 

      

Divide by (1-r):   S = a(1−rn)/(1−r). 

And so, 

 

  

Infinite Geometric Series 

When n goes to infinity and r is less than 1, then rn goes to zero and we get: 

 

NOTE: this does not work when r is 1 or more (or less than -1): 

r must be between (but not including) -1 and 1 

and r should not be 0 because we get the sequence {a,0,0,...} which isn't geometric 

Let's bring back our previous example, and see what happens: 
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Example: Add up ALL the terms of the Geometric Sequence  

{ 1/2, 1/4, 1/8, 1/16, ... } 

We have: 

 a = 1/2 (the first term) 

 r = 1/2 (halves each time) 

And so: 

 

= ½ × 1 / ½ = 1 

Yes ... adding (1/2)+(1/4)+(1/8)+... equals exactly 1. 

 

  
 

Application - Recurring Decimal 

Does 0,999... equal 1? 

Calculate 0,999... 

We can write a recurring decimal as a sum like this: 

 

And now we can use the formula: 

 

Yes! 0,999... does equal 1.  
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There are more types of Infinite Series, and it is interesting (and often challenging!) to 

work out if they are convergent or not, and what it might converge to. 

Alternating Series 

An example of an Alternating Series: 

 

It moves up and down, but in this case converges on the natural logarithm of 2. 

  

Tutorial 3 – homework 

 
 

EXE_3.1: What is the eleventh term of the geometric sequence 3, 6, 12, 24, ... ? 

 
 
 
 
 
 
 
EXE_3.2: What is the ninth term of the geometric sequence 81, 27, 9, 3, ... ? 

 
 
 
 
 
 
 
 
EXE_3.3: What is the sum of the first eight terms of the geometric sequence 5, 15, 45, ... ?  
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Tutorial 4 – Graph of simple functions 

 

What is the Purpose of Tutorial 4? 

In this tutorial we will master basic facts about the graph of a function on the Cartesian product. In particular, we answer the 
following questions. 

 What is a function? 

 What is the graph of a function? 

What is a Function? 

A function relates an input to an output. 

 

It is like a machine that has an input and an output. 

And the output is related somehow to the input. 

 

  f(x)   
"f(x) = ... " is the classic way of writing a function.  

And there are other ways, as you will see! 

Input, Relationship, Output 

We will see many ways to think about functions, but there are always three main parts: 

 The input 

 The relationship 

 The output 

Example: "Multiply by 2" is a very simple function. Here are the three parts: 

Input Relationship Output 

0 × 2 0 

1 × 2 2 

7 × 2 14 

10 × 2 20 

... ... ... 

For an input of 50, what is the output? 
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Some Examples of Functions 

 x2 (squaring) is a function 

 x3+1 is also a function 

 Sine, Cosine and Tangent are functions used in trigonometry 

 and there are lots more! 

But we are not going to look at specific functions. We will look at the general idea of a 

function. 

Names 

First, it is useful to give a function a name. 

The most common name is "f", but we can have other names like "g". 

 

We say "f of x equals x squared" 

What goes into the function is put inside parentheses () after the name of the function: 

So f(x) shows us the function is called "f", and "x" goes in 

And we usually see what a function does with the input: 

f(x) = x2 shows us that function "f" takes "x" and squares it. 

Example: with f(x) = x2 an input of 4 becomes an output of 16. So we can write  

f(4) = 16 

Don't get too concerned about "x", it is just there to show us where the input goes and 

what happens to it. It could be anything! 

The function f(x) = 1 - x + x2 is the same function as: 

f(q) = 1 - q + q2                  h(A) = 1 - A + A2                         w(θ) = 1 - θ + θ2 
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The variable (x, q, A, etc.) is just there so we know where to put the values: 

f(2) = 1 - 2 + 22 = 3 

Sometimes a function has no name, and we see something like: 

y = x2 

But there is still: 

 an input (x) 

 a relationship (squaring) 

 and an output (y) 

At the top we said that a function was like a machine. But a function doesn't really have 

belts or cogs or any moving parts - and it doesn't actually destroy what we put into it! 

A function relates an input to an output. 

Saying "f(4) = 16" is like saying 4 is somehow related to 16. Or 4 → 16 

 

Example: A tree grows 20 cm every year, so the height of the tree is related to its age 

using the function h: 

h(age) = age × 20 

So, if the age is 10 years, the height is h(10) = 10 × 20 = 200 cm. 

Here are some example values: 

age h(age) = age × 20 

0 0 

1 20 

3,2 64 

15 300 

... ... 
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 What Types of Things Do Functions Process? 

"Numbers" seems an obvious answer, but... 

 

... which numbers? 

For example, the tree-height function h(age) = age×20 makes no 

sense for an age less than zero. 

 

... it could also be letters ("A"→"B"), or ID codes ("A6309"→"Pass") or 

stranger things. 

So we need something more powerful, and that is where sets come in. 

 

 

 

A set is a collection of things. 

Here are some examples: 

Set of even numbers: {..., -4, -2, 0, 2, 4, ...} 

Set of clothes: {"hat","shirt",...}  

Set of prime numbers: {2, 3, 5, 7, 11, 13, 17, ...} 

Positive multiples of 3 that are less than 10: {3, 6, 9} 

Each individual thing in the set (such as "4" or "hat") is called element. 

So, a function takes elements of a set, and gives back elements of a set. 

A Function is Special 

But a function has special rules: 

 It must work for every possible input value 

 And it has only one relationship for each input value 

This can be said in one definition: 
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Formal Definition of a Function 

A function is a law which relates each element of 

a set 

with exactly one element of another set 

(possibly the same set). 

The Two Important Things! 

1. "...each element..." means that every element in X is related to 

some element in Y. 

We say that the function covers X (relates every element of it). 

Some elements of Y might not be related to at all (which is fine). 

2. "...exactly one..." means that a function is single valued. It will 

not give back 2 or more results for the same input. 

So "f(2) = 7 or 9" is not a function! 

Note: "One-to-many" is not allowed, but "many-to-one" is allowed: 

 

  

 

(one-to-many)   (many-to-one) 

This is NOT OK in a function   But this is OK in a function 

When a relationship does not follow those two rules then it is not a function... it is still 

a relationship, just not a function. 
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Example: The relationship x → x2 

 

Could also be written as a table: 

X: x Y: x2 

3 9 

1 1 

0 0 

4 16 

-4 16 

... ... 

x → x2 is a function, because: 

 Every element in X is related to Y 

 No element in X has two or more related elements in Y 

So it follows the rules. Notice how both 4 and -4 relate to 16, which is allowed. 

Activity 5:  Is the following relationship a function? 

 

Infinitely Many 

Functions usually work on sets with infinitely many elements. 

Example: y = x3 
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 The input set "X" is the set of all Real Numbers 

 The output set "Y" is also the set of all the Real Numbers 

We can't show ALL the values, so here are just a few examples: 

X: x Y: x3 

-2 -8 

-0,1 -0,001 

0 0 

1,1 1,331 

3 27 

and so on... and so on... 

 Ordered Pairs 

And here is another way to think about functions: 

Write the input and output of a function as an "ordered pair". 

They are called ordered pairs because the input always comes first, and the output 

second: 

(input, output) 

So it looks like this: 

( x, f(x) ) 

Example: If the function takes in "4" and gives out "16" we write (4, 16). 

Set of Ordered Pairs 

A function can then be defined as a set of ordered pairs: 

Example: {(2,4), (3,5), (7,3)} is a function that says 

"2 is related to 4", "3 is related to 5" and "7 is related 3". 

Also, notice that: 

 the domain is {2,3,7} (the input values) 

 and the range is {4,5,3} (the output values) 
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Remember, the function has to be single valued, so we also say "if it contains (a, b) and 

(a, c), then b must equal c", which is just a way of saying that an input of "a" cannot 

produce two different results. 

Example: {(2,4), (2,5), (7,3)} is not a function because {2,4} and {2,5} means that 2 

could be related to 4 or 5. 

In other words it is not a function because it is not single valued 

  

 

  

We can graph ordered pairs because they are also coordinates! 

  

 

The set of all ordered pairs (x, f(x)) in the product X x Y is called the graph of the 

function f. 

 

 

Vertical Line Test 

On a graph, the idea of single valued means that no 

vertical line ever crosses more than one value. 

If it crosses more than once it is still a valid curve, 

but is not a function. 

 
 

Some types of functions have stricter rules. To find out more you can read Injective, 

Surjective and Bijective. 
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Conclusion  

 a function relates inputs to outputs,  

 a function takes elements from a set (the domain) and relates them to 
elements in a set (the codomain), 

 all the outputs (the actual values related to) are together called 

the range, 

 a function is a special type of relation where every element in the 

domain is included, and any input produces only one output, 

 an input and its matching output are together called an ordered pair, so 
a function can also be seen as a set of ordered pairs following the 

rules above. 

 

Tutorial 4 – Homework: Draft Assignment 

 

EXE_4.1: What are the Cartesian coordinates of the points A, B and C? 
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EXE_4.2:  Consider A = (2, 5), B = (2, -1), C = (-6, -1) and D = (-6, 5). 

 
A is joined to B, B to C, C to D and D to A with straight lines. What shape is ABCD? 
 
(Hint: sketch a graph and put the points on it) 
 
 
 
 
 

EXE_4.3: Write an equation to represent the function from the following table of values: 

 

 
 
Write an equation to represent the function from the following table of values: 
 

 
 

EXE_4.4: The function f is defined on the real numbers by f(x) = 2 + x – x2. What is the value of f(-3)? 

 
 
 
 
 
 
 

EXE_4.5: What is the sum of the first nine terms of the geometric sequence 20, 10, 5, ... ? 

Give your answer as a decimal correct to 1 decimal place. 
 
 
 
 
 
 

 

EXE_4.6: For the sequence defined by an = n2 - 5n + 2, what is the smallest value of n for which an is positive?  
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Tutorial 5 – Areas as limit of sums 

 

What is the Purpose of Tutorial 5? 

The purpose of the tutorial is to show how to calculate the area of a region under the graph of a non-negative real-valued 
function making use of what we have learnt about sums and series.  

 How can I calculate the area of a region under a curve? 

 

 

Introduction to integration 

Let us suppose we all know what finding the area of a geometric figure means and let us 
review some of its properties. 

 
 The area of a plan region is a non-negative real number expressed w.r.t. a fixed 

unity of measurement. In other words, is the number of unit squares contained 

within the edge of the figure 

 The area of a rectangle with width W and height H is A=W x H  

 Congruent regions have the same areas 

 If the region S in contained in the region R, then the area of S is less equal than 

the area of R 

 If the region R is the union of regions with no overlaps, then the area of R is he 

sum of the areas of those regions. 

 

Thanks to these properties we are able to calculate the area of any polygon, i.e. 
regions bounded by parts of a straight line. However, we cannot go beyond polygons 

without making a passage to a limit. 
 

In this tutorial we consider the problem of finding the area of a region R which is 
under the graph of a real-valued function f over the x-axis and between two end 

points “a” and “b” on it with a<b.  

 
 
In order to do this, we proceed as follows. 

We divide the interval [a,b] in n subintervals through the points of division 
𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < 𝑥3 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏 

Let us call ∆𝑥𝑖  the length of the i-th subinterval [𝑥𝑖 − 𝑥𝑖−1] 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 
Let us build on every subinterval [𝑥𝑖 − 𝑥𝑖−1] a vertical rectangle which has base ∆𝑥𝑖  and 

height f(𝑥𝑖).  
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The area of this rectangle is f(𝑥𝑖)  ∙ ∆𝑥𝑖. 

 
Let us consider now the sum of all these rectangles 

𝑆𝑛 = 𝑓(𝑥0) ∙ ∆𝑥1 + 𝑓(𝑥1) ∙ ∆𝑥2 + 𝑓(𝑥2) ∙ ∆𝑥3 + ⋯ + 𝑓(𝑥𝑛−1) ∙ ∆𝑥𝑛 = ∑ 𝑓(𝑥𝑖−1) ∙ ∆𝑥𝑖

𝑛

𝑖=1

 

 

 
Obviously, 𝑆𝑛 is an approximation of the area of the region R but this approximation 

become even better if we increase the number of subintervals  [𝑥𝑖 − 𝑥𝑖−1]  so that ∆𝑥𝑖 

become smaller. Note that the quantity ∆𝑥𝑖 represents the thickness of a small but 

finite rectangle.  

 

 
Using a more sophisticated mathematical language, we could say that the area of the 
region R is seen as the limit of the area  𝑆𝑛  when n goes to infinity (∆𝑥𝑖 goes to 0). 

 

 
 

If this sum can actually be found, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called the definite integral of f(x), from  

x = a to x = b.  
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Notation 

The symbol for "Integral" is a stylish "S" 

for "Sum" (summing slices): 
  

 

After the Integral Symbol we put the function we want to find the integral of (called the 

Integrand), and then finish with dx to mean the slices go in the x direction (and approach 

zero in width). 

 

 

 

Activity 6: Use the idea of the limit of a sum to find the area under the graph of y = x2 

between x = 0 and x = 1.  

 

 

Refer to the graph in the figure above to help you answer the questions.  

The area under y = x2 is approximated by a number of thin rectangles.  

(a) If the interval between x = 0 and x = 1 is divided into n rectangles what is the width 

of each rectangle? Answer: 

 

 

(b) What is the x coordinate at the left-hand side of the first rectangle? Answer: 
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(c) What is the x coordinate at the left-hand side of the second rectangle? Answer: 

 

 

(d) What is the x coordinate at the left-hand side of the third rectangle? Answer:  

 

 

(e) What is the x coordinate at the left-hand side of the kth rectangle? Answer: 

 

 

 

(f) Given that y = x2, what is the y coordinate at the left-hand side of the kth rectangle? 

Answer: 

 

 

(g) The area of the kth rectangle is its height × its width. Write down the area of the kth 

rectangle. Answer: 

 

 

(h) Work out the total area Sn of the n rectangles. Answer: 

 

 

 

 

 

 

 

 

 



Page | 47  
 

 

 

 

 

 

 

 

 

 

(i) Let n tend to infinity to obtain the exact answer: 

 

 

 

Tutorial 5 – Homework: Final Assignment  

Mastering basic facts in addition 

 

EXE_5.1 
What is the sum of the first six triangular numbers?  

 

 

What is the sum of the squares of the first eighty natural numbers?  

 

 

EXE_5.2 

Show that ∑ (𝑛2 − 𝑛 − 1)𝑘
𝑛=1 =

𝑘(𝑘−2)(𝑘+2)

3
.   

Hence  calculate the value of ∑ (𝑛2 − 𝑛 − 1)40
𝑛=10  .  
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EXE_5.3 

The picture below shows a square with edge long ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
 divided in a little square 

of edge 1 and in n-1 regions having an “L” form whose minor edges are long 2,3,…n.  

 Show that the area of the “L” regions with minor edge “i” is “i3” 

 Then verify that ∑ 𝑖3𝑛
𝑖=1 =

𝑛2(𝑛+1)2

4
. 

 
 
 

 
 
 

A geometrical interpretation for n=5 is the following. 
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EXE_5.4 
Add up all the terms of the following infinite geometric sequence:  
 

 
 
 
 
 
 
 
 
 
 
 

EXE_5.5 
Find the integral of the function f(x)=1-x between 0 and 1. 
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EXE_5.6 
 

Find the integral of the function f(x)=x3 between 0 and b>0. 
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Tutorial 6 – Feedback 

 

What is the Purpose of Tutorial 6?  

 Reflect on skills learned on the programme with a view to encouraging resilience  

 Receive feedback on final assignment  
 
 
 
 
 
 
 
 

What are the key questions?  

 What strengths have I demonstrated in my work and what areas of development are there left for me to 
address?  

 What steps do I need to take to improve my academic output?  
 
 
 
 
 
 
 
 
 

Activity 2 – Marking your own  

Using the mark scheme, identify three things you did well and three things you could improve.  
 
What went well?(WWW) 
 
1.  

2.  

3.  
 
What could be improved? (EBI) 
 
1.  

2.  

3.  
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Activity 3 – Responding to feedback  

Read through your feedback sheet and highlight on your assignment where you received positive feedback 
(What Went Well) and areas for improvement (Even Better If). You might find it helpful to annotate this with a 
brief comment or two. 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Acknowledgement: The structure and the activities in this feedback tutorial were first designed by Hannah Manktelow in January 2015. We 
have repeated them here as they demonstrate thoughtful and excellent planning, and can be used by all tutors to ensure a successful and 
productive feedback tutorial.) 

University Applications Guidance 

 

For course choices and careers information:     www.brightknowledge.org.uk 
 
For information and statistics on universities and course:   www.unistats.direct.gov.uk 
 
For comprehensive information on universities, including rankings:  www.thecompleteuniversityguide.co.uk 
 
PLEASE NOTE – The Scholars Programme is designed to support the university applications process at your school. The work you 
complete for the programme should add to your schoolwork rather than detract from it. Please be aware of deadlines and try to 
manage your workload appropriately. If you are worried about the Scholars Programme interfering with your schoolwork then 
please speak to your teacher. 
 
 

Subject Specific Top Tips for Strengthening your application 

What could you read around the subject? 
www.intmath.com/blog/mathematics/the-twelve-days-of-christmas-how-many-presents-1686 
www.intmath.com/applications-integration/applications-integrals-intro.php 
Evaluating π and e with series 
 
Suggestions of podcasts/videos that can be found online?  
Zeno’s paradox on  www.numberphile.com  or  https://www.youtube.com/watch?v=skM37PcZmWE 
 
For course choices and careers information:  
www.furthermaths.org.uk/fmincareer and www.mathscareers.org.uk 
 
 

http://www.intmath.com/blog/mathematics/the-twelve-days-of-christmas-how-many-presents-1686
http://www.intmath.com/applications-integration/applications-integrals-intro.php
http://www.numberphile.com/
https://www.youtube.com/watch?v=skM37PcZmWE
http://www.furthermaths.org.uk/fmincareer
http://www.mathscareers.org.uk/
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